Properties

Label 2-2e7-128.109-c1-0-3
Degree 22
Conductor 128128
Sign 0.9810.189i0.981 - 0.189i
Analytic cond. 1.022081.02208
Root an. cond. 1.010981.01098
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.793 − 1.17i)2-s + (1.68 + 0.898i)3-s + (−0.742 + 1.85i)4-s + (−1.56 + 1.91i)5-s + (−0.281 − 2.68i)6-s + (3.63 + 2.43i)7-s + (2.76 − 0.603i)8-s + (0.353 + 0.529i)9-s + (3.48 + 0.321i)10-s + (−4.39 − 1.33i)11-s + (−2.91 + 2.45i)12-s + (1.74 − 1.42i)13-s + (−0.0388 − 6.19i)14-s + (−4.35 + 1.80i)15-s + (−2.89 − 2.75i)16-s + (3.75 + 1.55i)17-s + ⋯
L(s)  = 1  + (−0.560 − 0.827i)2-s + (0.970 + 0.518i)3-s + (−0.371 + 0.928i)4-s + (−0.701 + 0.854i)5-s + (−0.114 − 1.09i)6-s + (1.37 + 0.919i)7-s + (0.976 − 0.213i)8-s + (0.117 + 0.176i)9-s + (1.10 + 0.101i)10-s + (−1.32 − 0.401i)11-s + (−0.842 + 0.709i)12-s + (0.483 − 0.396i)13-s + (−0.0103 − 1.65i)14-s + (−1.12 + 0.466i)15-s + (−0.724 − 0.689i)16-s + (0.909 + 0.376i)17-s + ⋯

Functional equation

Λ(s)=(128s/2ΓC(s)L(s)=((0.9810.189i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.981 - 0.189i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(128s/2ΓC(s+1/2)L(s)=((0.9810.189i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.981 - 0.189i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 128128    =    272^{7}
Sign: 0.9810.189i0.981 - 0.189i
Analytic conductor: 1.022081.02208
Root analytic conductor: 1.010981.01098
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ128(109,)\chi_{128} (109, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 128, ( :1/2), 0.9810.189i)(2,\ 128,\ (\ :1/2),\ 0.981 - 0.189i)

Particular Values

L(1)L(1) \approx 1.02299+0.0980705i1.02299 + 0.0980705i
L(12)L(\frac12) \approx 1.02299+0.0980705i1.02299 + 0.0980705i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.793+1.17i)T 1 + (0.793 + 1.17i)T
good3 1+(1.680.898i)T+(1.66+2.49i)T2 1 + (-1.68 - 0.898i)T + (1.66 + 2.49i)T^{2}
5 1+(1.561.91i)T+(0.9754.90i)T2 1 + (1.56 - 1.91i)T + (-0.975 - 4.90i)T^{2}
7 1+(3.632.43i)T+(2.67+6.46i)T2 1 + (-3.63 - 2.43i)T + (2.67 + 6.46i)T^{2}
11 1+(4.39+1.33i)T+(9.14+6.11i)T2 1 + (4.39 + 1.33i)T + (9.14 + 6.11i)T^{2}
13 1+(1.74+1.42i)T+(2.5312.7i)T2 1 + (-1.74 + 1.42i)T + (2.53 - 12.7i)T^{2}
17 1+(3.751.55i)T+(12.0+12.0i)T2 1 + (-3.75 - 1.55i)T + (12.0 + 12.0i)T^{2}
19 1+(0.804+8.16i)T+(18.63.70i)T2 1 + (-0.804 + 8.16i)T + (-18.6 - 3.70i)T^{2}
23 1+(1.74+0.347i)T+(21.2+8.80i)T2 1 + (1.74 + 0.347i)T + (21.2 + 8.80i)T^{2}
29 1+(0.5981.97i)T+(24.1+16.1i)T2 1 + (-0.598 - 1.97i)T + (-24.1 + 16.1i)T^{2}
31 1+(3.813.81i)T31iT2 1 + (3.81 - 3.81i)T - 31iT^{2}
37 1+(1.040.102i)T+(36.27.21i)T2 1 + (1.04 - 0.102i)T + (36.2 - 7.21i)T^{2}
41 1+(0.711+3.57i)T+(37.815.6i)T2 1 + (-0.711 + 3.57i)T + (-37.8 - 15.6i)T^{2}
43 1+(0.7930.423i)T+(23.835.7i)T2 1 + (0.793 - 0.423i)T + (23.8 - 35.7i)T^{2}
47 1+(1.43+3.46i)T+(33.233.2i)T2 1 + (-1.43 + 3.46i)T + (-33.2 - 33.2i)T^{2}
53 1+(1.79+5.91i)T+(44.029.4i)T2 1 + (-1.79 + 5.91i)T + (-44.0 - 29.4i)T^{2}
59 1+(4.26+3.49i)T+(11.5+57.8i)T2 1 + (4.26 + 3.49i)T + (11.5 + 57.8i)T^{2}
61 1+(2.895.41i)T+(33.850.7i)T2 1 + (2.89 - 5.41i)T + (-33.8 - 50.7i)T^{2}
67 1+(2.614.89i)T+(37.255.7i)T2 1 + (2.61 - 4.89i)T + (-37.2 - 55.7i)T^{2}
71 1+(0.916+1.37i)T+(27.165.5i)T2 1 + (-0.916 + 1.37i)T + (-27.1 - 65.5i)T^{2}
73 1+(6.52+4.36i)T+(27.967.4i)T2 1 + (-6.52 + 4.36i)T + (27.9 - 67.4i)T^{2}
79 1+(4.05+9.80i)T+(55.8+55.8i)T2 1 + (4.05 + 9.80i)T + (-55.8 + 55.8i)T^{2}
83 1+(0.630+0.0621i)T+(81.4+16.1i)T2 1 + (0.630 + 0.0621i)T + (81.4 + 16.1i)T^{2}
89 1+(3.26+0.649i)T+(82.234.0i)T2 1 + (-3.26 + 0.649i)T + (82.2 - 34.0i)T^{2}
97 1+(12.612.6i)T97iT2 1 + (12.6 - 12.6i)T - 97iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−13.38296094840089922269989269265, −12.03027316090919291868381780690, −11.11111147183805602827016805586, −10.47816478386126404860251873630, −9.006578995458521407068255385024, −8.301739592640086702681419332310, −7.54490164628953767390668762033, −5.09211553610704047339388490087, −3.45210484051890464526484260178, −2.54110431857810722440460355564, 1.54360325812182180933004949612, 4.24003204819980336188134041832, 5.43741241230721573118911457962, 7.66199479188589657737530140411, 7.76869991972290422110601982939, 8.507370103133028687115291104304, 9.959551090229819163050929908092, 11.08739180895677751576310876865, 12.51954024286557126994115700370, 13.76355045996499708643853754561

Graph of the ZZ-function along the critical line