Properties

Label 2-2e8-1.1-c11-0-76
Degree $2$
Conductor $256$
Sign $-1$
Analytic cond. $196.695$
Root an. cond. $14.0248$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 576.·3-s + 2.27e3·5-s − 3.77e4·7-s + 1.54e5·9-s + 2.14e4·11-s + 1.39e6·13-s + 1.30e6·15-s + 4.72e6·17-s − 1.41e7·19-s − 2.17e7·21-s − 5.42e7·23-s − 4.36e7·25-s − 1.28e7·27-s + 1.55e8·29-s + 1.42e7·31-s + 1.23e7·33-s − 8.56e7·35-s + 4.10e8·37-s + 8.03e8·39-s + 1.58e8·41-s − 1.07e9·43-s + 3.51e8·45-s − 2.52e9·47-s − 5.53e8·49-s + 2.72e9·51-s − 1.99e9·53-s + 4.85e7·55-s + ⋯
L(s)  = 1  + 1.36·3-s + 0.324·5-s − 0.848·7-s + 0.873·9-s + 0.0400·11-s + 1.04·13-s + 0.444·15-s + 0.807·17-s − 1.31·19-s − 1.16·21-s − 1.75·23-s − 0.894·25-s − 0.172·27-s + 1.40·29-s + 0.0892·31-s + 0.0548·33-s − 0.275·35-s + 0.973·37-s + 1.42·39-s + 0.213·41-s − 1.11·43-s + 0.283·45-s − 1.60·47-s − 0.279·49-s + 1.10·51-s − 0.654·53-s + 0.0130·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(256\)    =    \(2^{8}\)
Sign: $-1$
Analytic conductor: \(196.695\)
Root analytic conductor: \(14.0248\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 256,\ (\ :11/2),\ -1)\)

Particular Values

\(L(6)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 - 576.T + 1.77e5T^{2} \)
5 \( 1 - 2.27e3T + 4.88e7T^{2} \)
7 \( 1 + 3.77e4T + 1.97e9T^{2} \)
11 \( 1 - 2.14e4T + 2.85e11T^{2} \)
13 \( 1 - 1.39e6T + 1.79e12T^{2} \)
17 \( 1 - 4.72e6T + 3.42e13T^{2} \)
19 \( 1 + 1.41e7T + 1.16e14T^{2} \)
23 \( 1 + 5.42e7T + 9.52e14T^{2} \)
29 \( 1 - 1.55e8T + 1.22e16T^{2} \)
31 \( 1 - 1.42e7T + 2.54e16T^{2} \)
37 \( 1 - 4.10e8T + 1.77e17T^{2} \)
41 \( 1 - 1.58e8T + 5.50e17T^{2} \)
43 \( 1 + 1.07e9T + 9.29e17T^{2} \)
47 \( 1 + 2.52e9T + 2.47e18T^{2} \)
53 \( 1 + 1.99e9T + 9.26e18T^{2} \)
59 \( 1 - 3.21e9T + 3.01e19T^{2} \)
61 \( 1 - 1.20e10T + 4.35e19T^{2} \)
67 \( 1 - 4.11e9T + 1.22e20T^{2} \)
71 \( 1 - 1.02e10T + 2.31e20T^{2} \)
73 \( 1 + 2.32e10T + 3.13e20T^{2} \)
79 \( 1 + 3.03e10T + 7.47e20T^{2} \)
83 \( 1 - 1.08e10T + 1.28e21T^{2} \)
89 \( 1 + 9.34e10T + 2.77e21T^{2} \)
97 \( 1 + 1.19e11T + 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.722683690679871011021840592891, −8.421292071642474493292409495998, −8.131615446704288702355837531949, −6.63464756516365505863641817832, −5.88498266815982643513749674677, −4.17026863692531037415223472262, −3.41095945629728931706651369806, −2.46155758446196605275098592617, −1.49817639827231689913203725001, 0, 1.49817639827231689913203725001, 2.46155758446196605275098592617, 3.41095945629728931706651369806, 4.17026863692531037415223472262, 5.88498266815982643513749674677, 6.63464756516365505863641817832, 8.131615446704288702355837531949, 8.421292071642474493292409495998, 9.722683690679871011021840592891

Graph of the $Z$-function along the critical line