Properties

Label 256.12.a.l
Level $256$
Weight $12$
Character orbit 256.a
Self dual yes
Analytic conductor $196.696$
Analytic rank $1$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,12,Mod(1,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 256.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(196.695854223\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4 x^{7} - 59846 x^{6} - 119616 x^{5} + 904265037 x^{4} + 7141379724 x^{3} + \cdots + 17099916310116 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{53}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 64)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 124) q^{3} + \beta_{3} q^{5} + ( - \beta_{5} + \beta_{4} - \beta_{3}) q^{7} + (\beta_{2} - 218 \beta_1 + 77593) q^{9} + (\beta_{7} + 139 \beta_1 - 98676) q^{11} + (3 \beta_{6} + 5 \beta_{5} + \cdots + 128 \beta_{3}) q^{13}+ \cdots + ( - 155520 \beta_{7} + \cdots + 4164648972) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 992 q^{3} + 620744 q^{9} - 789408 q^{11} - 757680 q^{17} - 4654304 q^{19} + 75476504 q^{25} - 318700352 q^{27} + 364632288 q^{33} - 434569728 q^{35} - 2247301968 q^{41} - 2061364640 q^{43} + 8106635080 q^{49}+ \cdots + 33317191776 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 4 x^{7} - 59846 x^{6} - 119616 x^{5} + 904265037 x^{4} + 7141379724 x^{3} + \cdots + 17099916310116 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 1161742031108 \nu^{7} + 7198449043742 \nu^{6} + \cdots + 15\!\cdots\!22 ) / 72\!\cdots\!05 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 59911076412152 \nu^{7} + \cdots - 17\!\cdots\!24 ) / 72\!\cdots\!05 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 11\!\cdots\!96 \nu^{7} + \cdots + 27\!\cdots\!16 ) / 11\!\cdots\!10 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 47\!\cdots\!68 \nu^{7} + \cdots - 12\!\cdots\!72 ) / 72\!\cdots\!05 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 12\!\cdots\!64 \nu^{7} + \cdots - 25\!\cdots\!52 ) / 11\!\cdots\!10 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 33\!\cdots\!56 \nu^{7} + \cdots + 53\!\cdots\!56 ) / 21\!\cdots\!15 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 53\!\cdots\!56 \nu^{7} + \cdots + 25\!\cdots\!12 ) / 19\!\cdots\!35 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{4} + 4096\beta _1 + 8192 ) / 16384 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -16\beta_{6} + 16\beta_{5} - 7\beta_{4} + 112\beta_{3} + 512\beta_{2} + 17408\beta _1 + 122580992 ) / 8192 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - 3456 \beta_{7} - 1272 \beta_{6} - 7944 \beta_{5} + 24249 \beta_{4} - 55608 \beta_{3} + \cdots + 1102913536 ) / 8192 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - 864 \beta_{7} - 119248 \beta_{6} + 88528 \beta_{5} - 6373 \beta_{4} + 951472 \beta_{3} + \cdots + 454626757120 ) / 1024 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 12939696 \beta_{7} - 8826535 \beta_{6} - 48706265 \beta_{5} + 149568404 \beta_{4} + \cdots + 6868491732992 ) / 1024 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 206874432 \beta_{7} - 10773547152 \beta_{6} + 7187776656 \beta_{5} + 1619026311 \beta_{4} + \cdots + 27\!\cdots\!44 ) / 2048 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 1544209195968 \beta_{7} - 1623189223460 \beta_{6} - 8016105574876 \beta_{5} + \cdots + 11\!\cdots\!84 ) / 4096 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−167.758
−171.222
−15.8522
−12.3881
11.8013
8.33716
177.273
173.809
0 −803.959 0 −9050.16 0 71874.1 0 469202. 0
1.2 0 −803.959 0 9050.16 0 −71874.1 0 469202. 0
1.3 0 −182.481 0 −11689.5 0 −26516.0 0 −143848. 0
1.4 0 −182.481 0 11689.5 0 26516.0 0 −143848. 0
1.5 0 −85.7231 0 −3056.94 0 −68336.8 0 −169799. 0
1.6 0 −85.7231 0 3056.94 0 68336.8 0 −169799. 0
1.7 0 576.162 0 −2270.57 0 37732.3 0 154816. 0
1.8 0 576.162 0 2270.57 0 −37732.3 0 154816. 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 256.12.a.l 8
4.b odd 2 1 256.12.a.n 8
8.b even 2 1 256.12.a.n 8
8.d odd 2 1 inner 256.12.a.l 8
16.e even 4 2 64.12.b.c 16
16.f odd 4 2 64.12.b.c 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
64.12.b.c 16 16.e even 4 2
64.12.b.c 16 16.f odd 4 2
256.12.a.l 8 1.a even 1 1 trivial
256.12.a.l 8 8.d odd 2 1 inner
256.12.a.n 8 4.b odd 2 1
256.12.a.n 8 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(256))\):

\( T_{3}^{4} + 496T_{3}^{3} - 386472T_{3}^{2} - 120671424T_{3} - 7245913968 \) Copy content Toggle raw display
\( T_{5}^{8} - 233050752 T_{5}^{6} + \cdots + 53\!\cdots\!00 \) Copy content Toggle raw display
\( T_{7}^{8} - 11962624512 T_{7}^{6} + \cdots + 24\!\cdots\!84 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} + 496 T^{3} + \cdots - 7245913968)^{2} \) Copy content Toggle raw display
$5$ \( T^{8} + \cdots + 53\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{8} + \cdots + 24\!\cdots\!84 \) Copy content Toggle raw display
$11$ \( (T^{4} + \cdots + 70\!\cdots\!52)^{2} \) Copy content Toggle raw display
$13$ \( T^{8} + \cdots + 16\!\cdots\!56 \) Copy content Toggle raw display
$17$ \( (T^{4} + \cdots + 10\!\cdots\!08)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + \cdots + 10\!\cdots\!64)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 37\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{8} + \cdots + 32\!\cdots\!04 \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots + 55\!\cdots\!64 \) Copy content Toggle raw display
$41$ \( (T^{4} + \cdots + 14\!\cdots\!24)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + \cdots + 12\!\cdots\!52)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 41\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( (T^{4} + \cdots + 24\!\cdots\!04)^{2} \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots + 30\!\cdots\!16 \) Copy content Toggle raw display
$67$ \( (T^{4} + \cdots + 65\!\cdots\!32)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 55\!\cdots\!36 \) Copy content Toggle raw display
$73$ \( (T^{4} + \cdots + 96\!\cdots\!88)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots + 11\!\cdots\!04 \) Copy content Toggle raw display
$83$ \( (T^{4} + \cdots + 67\!\cdots\!00)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + \cdots - 17\!\cdots\!68)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + \cdots - 11\!\cdots\!28)^{2} \) Copy content Toggle raw display
show more
show less