Properties

Label 2-3024-1.1-c1-0-10
Degree $2$
Conductor $3024$
Sign $1$
Analytic cond. $24.1467$
Root an. cond. $4.91393$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.267·5-s − 7-s − 5.19·11-s + 3.46·13-s + 4·17-s + 5.92·19-s − 0.267·23-s − 4.92·25-s − 4.92·29-s + 1.53·31-s − 0.267·35-s − 0.464·37-s + 9.19·41-s − 5.46·43-s + 1.46·47-s + 49-s + 8·53-s − 1.39·55-s − 9.46·59-s + 10.9·61-s + 0.928·65-s + 8.53·67-s − 14.6·71-s + 8.39·73-s + 5.19·77-s + 12.3·79-s + 12.9·83-s + ⋯
L(s)  = 1  + 0.119·5-s − 0.377·7-s − 1.56·11-s + 0.960·13-s + 0.970·17-s + 1.36·19-s − 0.0558·23-s − 0.985·25-s − 0.915·29-s + 0.275·31-s − 0.0452·35-s − 0.0762·37-s + 1.43·41-s − 0.833·43-s + 0.213·47-s + 0.142·49-s + 1.09·53-s − 0.187·55-s − 1.23·59-s + 1.39·61-s + 0.115·65-s + 1.04·67-s − 1.73·71-s + 0.982·73-s + 0.592·77-s + 1.39·79-s + 1.41·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3024\)    =    \(2^{4} \cdot 3^{3} \cdot 7\)
Sign: $1$
Analytic conductor: \(24.1467\)
Root analytic conductor: \(4.91393\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3024,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.675636795\)
\(L(\frac12)\) \(\approx\) \(1.675636795\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
good5 \( 1 - 0.267T + 5T^{2} \)
11 \( 1 + 5.19T + 11T^{2} \)
13 \( 1 - 3.46T + 13T^{2} \)
17 \( 1 - 4T + 17T^{2} \)
19 \( 1 - 5.92T + 19T^{2} \)
23 \( 1 + 0.267T + 23T^{2} \)
29 \( 1 + 4.92T + 29T^{2} \)
31 \( 1 - 1.53T + 31T^{2} \)
37 \( 1 + 0.464T + 37T^{2} \)
41 \( 1 - 9.19T + 41T^{2} \)
43 \( 1 + 5.46T + 43T^{2} \)
47 \( 1 - 1.46T + 47T^{2} \)
53 \( 1 - 8T + 53T^{2} \)
59 \( 1 + 9.46T + 59T^{2} \)
61 \( 1 - 10.9T + 61T^{2} \)
67 \( 1 - 8.53T + 67T^{2} \)
71 \( 1 + 14.6T + 71T^{2} \)
73 \( 1 - 8.39T + 73T^{2} \)
79 \( 1 - 12.3T + 79T^{2} \)
83 \( 1 - 12.9T + 83T^{2} \)
89 \( 1 - 14.2T + 89T^{2} \)
97 \( 1 + 1.07T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.706656130904040624224948701115, −7.70129167661325562264374044191, −7.58626357726489868904360891348, −6.31042754048428183927397628405, −5.61709455052929294764869094618, −5.09179129310354683475812983083, −3.80532246593881169068799261681, −3.15593536102608501060438016228, −2.13300174175086057735239562193, −0.78611957722401249084231990815, 0.78611957722401249084231990815, 2.13300174175086057735239562193, 3.15593536102608501060438016228, 3.80532246593881169068799261681, 5.09179129310354683475812983083, 5.61709455052929294764869094618, 6.31042754048428183927397628405, 7.58626357726489868904360891348, 7.70129167661325562264374044191, 8.706656130904040624224948701115

Graph of the $Z$-function along the critical line