L(s) = 1 | + (−1.29 + 0.574i)2-s + (1.34 − 1.48i)4-s + (−0.0819 + 2.23i)5-s + (1.03 + 1.03i)7-s + (−0.880 + 2.68i)8-s + (−1.17 − 2.93i)10-s + (−3.35 − 4.61i)11-s + (−0.392 − 2.48i)13-s + (−1.92 − 0.742i)14-s + (−0.405 − 3.97i)16-s + (−4.26 − 2.17i)17-s + (−1.72 − 5.31i)19-s + (3.20 + 3.11i)20-s + (6.98 + 4.04i)22-s + (−0.0446 + 0.281i)23-s + ⋯ |
L(s) = 1 | + (−0.913 + 0.406i)2-s + (0.670 − 0.742i)4-s + (−0.0366 + 0.999i)5-s + (0.390 + 0.390i)7-s + (−0.311 + 0.950i)8-s + (−0.372 − 0.928i)10-s + (−1.01 − 1.39i)11-s + (−0.108 − 0.687i)13-s + (−0.515 − 0.198i)14-s + (−0.101 − 0.994i)16-s + (−1.03 − 0.526i)17-s + (−0.396 − 1.21i)19-s + (0.717 + 0.697i)20-s + (1.49 + 0.861i)22-s + (−0.00931 + 0.0587i)23-s + ⋯ |
Λ(s)=(=(900s/2ΓC(s)L(s)(0.257+0.966i)Λ(2−s)
Λ(s)=(=(900s/2ΓC(s+1/2)L(s)(0.257+0.966i)Λ(1−s)
Degree: |
2 |
Conductor: |
900
= 22⋅32⋅52
|
Sign: |
0.257+0.966i
|
Analytic conductor: |
7.18653 |
Root analytic conductor: |
2.68077 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ900(523,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 900, ( :1/2), 0.257+0.966i)
|
Particular Values
L(1) |
≈ |
0.433980−0.333562i |
L(21) |
≈ |
0.433980−0.333562i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.29−0.574i)T |
| 3 | 1 |
| 5 | 1+(0.0819−2.23i)T |
good | 7 | 1+(−1.03−1.03i)T+7iT2 |
| 11 | 1+(3.35+4.61i)T+(−3.39+10.4i)T2 |
| 13 | 1+(0.392+2.48i)T+(−12.3+4.01i)T2 |
| 17 | 1+(4.26+2.17i)T+(9.99+13.7i)T2 |
| 19 | 1+(1.72+5.31i)T+(−15.3+11.1i)T2 |
| 23 | 1+(0.0446−0.281i)T+(−21.8−7.10i)T2 |
| 29 | 1+(−4.78−1.55i)T+(23.4+17.0i)T2 |
| 31 | 1+(−3.26+1.06i)T+(25.0−18.2i)T2 |
| 37 | 1+(3.62−0.573i)T+(35.1−11.4i)T2 |
| 41 | 1+(0.181+0.131i)T+(12.6+38.9i)T2 |
| 43 | 1+(0.707−0.707i)T−43iT2 |
| 47 | 1+(−5.53+2.82i)T+(27.6−38.0i)T2 |
| 53 | 1+(−10.4+5.33i)T+(31.1−42.8i)T2 |
| 59 | 1+(10.3+7.49i)T+(18.2+56.1i)T2 |
| 61 | 1+(8.77−6.37i)T+(18.8−58.0i)T2 |
| 67 | 1+(0.542−1.06i)T+(−39.3−54.2i)T2 |
| 71 | 1+(11.1+3.62i)T+(57.4+41.7i)T2 |
| 73 | 1+(−14.6−2.31i)T+(69.4+22.5i)T2 |
| 79 | 1+(0.564−1.73i)T+(−63.9−46.4i)T2 |
| 83 | 1+(2.71+1.38i)T+(48.7+67.1i)T2 |
| 89 | 1+(7.48+10.3i)T+(−27.5+84.6i)T2 |
| 97 | 1+(−2.49−4.90i)T+(−57.0+78.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.03887043438433012248920969545, −8.841106423123243983719115355241, −8.368177655839823117404613582837, −7.44430293289363665746008244514, −6.64845818409723494909796819122, −5.80903284508245664498018554358, −4.91724428471116668549867694589, −3.03404974045309563967262465685, −2.37582243701496533591578347884, −0.34348035800529817020507138980,
1.47112419020502664133575035516, 2.36466032649321911039482796948, 4.11624732244242985137989501628, 4.68944994792576083308603085023, 6.12211750758365481229737678658, 7.22853011924114150224831687261, 7.930157957166459642670264760701, 8.639275701470087896549856316930, 9.448193219805989782446432955571, 10.29040838535992999982353712426