Properties

Label 900.2.bj.e.523.4
Level $900$
Weight $2$
Character 900.523
Analytic conductor $7.187$
Analytic rank $0$
Dimension $224$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,2,Mod(127,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.bj (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(224\)
Relative dimension: \(28\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 523.4
Character \(\chi\) \(=\) 900.523
Dual form 900.2.bj.e.487.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.29240 + 0.574201i) q^{2} +(1.34059 - 1.48419i) q^{4} +(-0.0819943 + 2.23456i) q^{5} +(1.03330 + 1.03330i) q^{7} +(-0.880349 + 2.68793i) q^{8} +(-1.17712 - 2.93503i) q^{10} +(-3.35595 - 4.61907i) q^{11} +(-0.392815 - 2.48014i) q^{13} +(-1.92876 - 0.742115i) q^{14} +(-0.405651 - 3.97938i) q^{16} +(-4.26203 - 2.17162i) q^{17} +(-1.72727 - 5.31601i) q^{19} +(3.20660 + 3.11732i) q^{20} +(6.98950 + 4.04269i) q^{22} +(-0.0446569 + 0.281952i) q^{23} +(-4.98655 - 0.366443i) q^{25} +(1.93177 + 2.97977i) q^{26} +(2.91885 - 0.148387i) q^{28} +(4.78796 + 1.55570i) q^{29} +(3.26564 - 1.06107i) q^{31} +(2.80922 + 4.91002i) q^{32} +(6.75519 + 0.359329i) q^{34} +(-2.39370 + 2.22425i) q^{35} +(-3.62025 + 0.573391i) q^{37} +(5.28478 + 5.87859i) q^{38} +(-5.93418 - 2.18759i) q^{40} +(-0.181512 - 0.131876i) q^{41} +(-0.707410 + 0.707410i) q^{43} +(-11.3545 - 1.21139i) q^{44} +(-0.104183 - 0.390037i) q^{46} +(5.53664 - 2.82106i) q^{47} -4.86458i q^{49} +(6.65503 - 2.38969i) q^{50} +(-4.20760 - 2.74183i) q^{52} +(10.4732 - 5.33638i) q^{53} +(10.5968 - 7.12035i) q^{55} +(-3.68711 + 1.86778i) q^{56} +(-7.08124 + 0.738663i) q^{58} +(-10.3120 - 7.49212i) q^{59} +(-8.77641 + 6.37643i) q^{61} +(-3.61124 + 3.24646i) q^{62} +(-6.44997 - 4.73264i) q^{64} +(5.57423 - 0.674413i) q^{65} +(-0.542962 + 1.06562i) q^{67} +(-8.93672 + 3.41444i) q^{68} +(1.81645 - 4.24909i) q^{70} +(-11.1713 - 3.62978i) q^{71} +(14.6329 + 2.31762i) q^{73} +(4.34956 - 2.81980i) q^{74} +(-10.2055 - 4.56296i) q^{76} +(1.30518 - 8.24060i) q^{77} +(-0.564003 + 1.73582i) q^{79} +(8.92544 - 0.580168i) q^{80} +(0.310310 + 0.0662124i) q^{82} +(-2.71578 - 1.38376i) q^{83} +(5.20208 - 9.34573i) q^{85} +(0.508061 - 1.32045i) q^{86} +(15.3702 - 4.95418i) q^{88} +(-7.48483 - 10.3020i) q^{89} +(2.15683 - 2.96862i) q^{91} +(0.358605 + 0.444261i) q^{92} +(-5.53570 + 6.82508i) q^{94} +(12.0206 - 3.42382i) q^{95} +(2.49688 + 4.90040i) q^{97} +(2.79324 + 6.28697i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 224 q - 4 q^{10} + 16 q^{13} - 16 q^{16} + 28 q^{22} - 32 q^{25} + 28 q^{28} - 100 q^{34} - 104 q^{37} + 60 q^{40} + 156 q^{52} + 144 q^{58} - 48 q^{61} + 60 q^{64} + 28 q^{70} + 40 q^{73} + 64 q^{82} + 136 q^{85}+ \cdots - 160 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{11}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.29240 + 0.574201i −0.913864 + 0.406021i
\(3\) 0 0
\(4\) 1.34059 1.48419i 0.670294 0.742096i
\(5\) −0.0819943 + 2.23456i −0.0366690 + 0.999327i
\(6\) 0 0
\(7\) 1.03330 + 1.03330i 0.390551 + 0.390551i 0.874884 0.484333i \(-0.160938\pi\)
−0.484333 + 0.874884i \(0.660938\pi\)
\(8\) −0.880349 + 2.68793i −0.311250 + 0.950328i
\(9\) 0 0
\(10\) −1.17712 2.93503i −0.372238 0.928137i
\(11\) −3.35595 4.61907i −1.01186 1.39270i −0.917758 0.397140i \(-0.870003\pi\)
−0.0940992 0.995563i \(-0.529997\pi\)
\(12\) 0 0
\(13\) −0.392815 2.48014i −0.108947 0.687866i −0.980345 0.197289i \(-0.936786\pi\)
0.871398 0.490577i \(-0.163214\pi\)
\(14\) −1.92876 0.742115i −0.515482 0.198338i
\(15\) 0 0
\(16\) −0.405651 3.97938i −0.101413 0.994844i
\(17\) −4.26203 2.17162i −1.03370 0.526694i −0.147043 0.989130i \(-0.546975\pi\)
−0.886653 + 0.462436i \(0.846975\pi\)
\(18\) 0 0
\(19\) −1.72727 5.31601i −0.396264 1.21958i −0.927973 0.372648i \(-0.878450\pi\)
0.531709 0.846927i \(-0.321550\pi\)
\(20\) 3.20660 + 3.11732i 0.717018 + 0.697055i
\(21\) 0 0
\(22\) 6.98950 + 4.04269i 1.49017 + 0.861905i
\(23\) −0.0446569 + 0.281952i −0.00931160 + 0.0587911i −0.991907 0.126970i \(-0.959475\pi\)
0.982595 + 0.185761i \(0.0594749\pi\)
\(24\) 0 0
\(25\) −4.98655 0.366443i −0.997311 0.0732886i
\(26\) 1.93177 + 2.97977i 0.378851 + 0.584381i
\(27\) 0 0
\(28\) 2.91885 0.148387i 0.551610 0.0280425i
\(29\) 4.78796 + 1.55570i 0.889102 + 0.288887i 0.717732 0.696320i \(-0.245180\pi\)
0.171371 + 0.985207i \(0.445180\pi\)
\(30\) 0 0
\(31\) 3.26564 1.06107i 0.586527 0.190574i −0.000695631 1.00000i \(-0.500221\pi\)
0.587222 + 0.809426i \(0.300221\pi\)
\(32\) 2.80922 + 4.91002i 0.496605 + 0.867976i
\(33\) 0 0
\(34\) 6.75519 + 0.359329i 1.15851 + 0.0616244i
\(35\) −2.39370 + 2.22425i −0.404610 + 0.375967i
\(36\) 0 0
\(37\) −3.62025 + 0.573391i −0.595166 + 0.0942650i −0.446748 0.894660i \(-0.647418\pi\)
−0.148418 + 0.988925i \(0.547418\pi\)
\(38\) 5.28478 + 5.87859i 0.857305 + 0.953634i
\(39\) 0 0
\(40\) −5.93418 2.18759i −0.938276 0.345889i
\(41\) −0.181512 0.131876i −0.0283475 0.0205956i 0.573521 0.819191i \(-0.305577\pi\)
−0.601869 + 0.798595i \(0.705577\pi\)
\(42\) 0 0
\(43\) −0.707410 + 0.707410i −0.107879 + 0.107879i −0.758986 0.651107i \(-0.774305\pi\)
0.651107 + 0.758986i \(0.274305\pi\)
\(44\) −11.3545 1.21139i −1.71176 0.182624i
\(45\) 0 0
\(46\) −0.104183 0.390037i −0.0153609 0.0575078i
\(47\) 5.53664 2.82106i 0.807603 0.411494i −0.000890557 1.00000i \(-0.500283\pi\)
0.808493 + 0.588505i \(0.200283\pi\)
\(48\) 0 0
\(49\) 4.86458i 0.694940i
\(50\) 6.65503 2.38969i 0.941163 0.337953i
\(51\) 0 0
\(52\) −4.20760 2.74183i −0.583489 0.380223i
\(53\) 10.4732 5.33638i 1.43861 0.733009i 0.451384 0.892330i \(-0.350931\pi\)
0.987227 + 0.159321i \(0.0509305\pi\)
\(54\) 0 0
\(55\) 10.5968 7.12035i 1.42887 0.960108i
\(56\) −3.68711 + 1.86778i −0.492711 + 0.249592i
\(57\) 0 0
\(58\) −7.08124 + 0.738663i −0.929813 + 0.0969912i
\(59\) −10.3120 7.49212i −1.34251 0.975390i −0.999348 0.0361143i \(-0.988502\pi\)
−0.343162 0.939276i \(-0.611498\pi\)
\(60\) 0 0
\(61\) −8.77641 + 6.37643i −1.12370 + 0.816419i −0.984766 0.173883i \(-0.944369\pi\)
−0.138937 + 0.990301i \(0.544369\pi\)
\(62\) −3.61124 + 3.24646i −0.458628 + 0.412301i
\(63\) 0 0
\(64\) −6.44997 4.73264i −0.806246 0.591580i
\(65\) 5.57423 0.674413i 0.691398 0.0836507i
\(66\) 0 0
\(67\) −0.542962 + 1.06562i −0.0663334 + 0.130187i −0.921792 0.387684i \(-0.873275\pi\)
0.855459 + 0.517871i \(0.173275\pi\)
\(68\) −8.93672 + 3.41444i −1.08374 + 0.414061i
\(69\) 0 0
\(70\) 1.81645 4.24909i 0.217107 0.507863i
\(71\) −11.1713 3.62978i −1.32579 0.430776i −0.441312 0.897354i \(-0.645487\pi\)
−0.884480 + 0.466578i \(0.845487\pi\)
\(72\) 0 0
\(73\) 14.6329 + 2.31762i 1.71265 + 0.271257i 0.934277 0.356548i \(-0.116046\pi\)
0.778371 + 0.627805i \(0.216046\pi\)
\(74\) 4.34956 2.81980i 0.505627 0.327795i
\(75\) 0 0
\(76\) −10.2055 4.56296i −1.17066 0.523408i
\(77\) 1.30518 8.24060i 0.148739 0.939103i
\(78\) 0 0
\(79\) −0.564003 + 1.73582i −0.0634553 + 0.195295i −0.977758 0.209736i \(-0.932739\pi\)
0.914303 + 0.405032i \(0.132739\pi\)
\(80\) 8.92544 0.580168i 0.997894 0.0648647i
\(81\) 0 0
\(82\) 0.310310 + 0.0662124i 0.0342680 + 0.00731194i
\(83\) −2.71578 1.38376i −0.298095 0.151887i 0.298546 0.954395i \(-0.403498\pi\)
−0.596641 + 0.802508i \(0.703498\pi\)
\(84\) 0 0
\(85\) 5.20208 9.34573i 0.564244 1.01369i
\(86\) 0.508061 1.32045i 0.0547856 0.142388i
\(87\) 0 0
\(88\) 15.3702 4.95418i 1.63846 0.528117i
\(89\) −7.48483 10.3020i −0.793390 1.09201i −0.993678 0.112270i \(-0.964188\pi\)
0.200288 0.979737i \(-0.435812\pi\)
\(90\) 0 0
\(91\) 2.15683 2.96862i 0.226097 0.311196i
\(92\) 0.358605 + 0.444261i 0.0373871 + 0.0463174i
\(93\) 0 0
\(94\) −5.53570 + 6.82508i −0.570963 + 0.703953i
\(95\) 12.0206 3.42382i 1.23329 0.351277i
\(96\) 0 0
\(97\) 2.49688 + 4.90040i 0.253520 + 0.497560i 0.982330 0.187155i \(-0.0599267\pi\)
−0.728811 + 0.684715i \(0.759927\pi\)
\(98\) 2.79324 + 6.28697i 0.282160 + 0.635080i
\(99\) 0 0
\(100\) −7.22878 + 6.90975i −0.722878 + 0.690975i
\(101\) 6.41836 0.638650 0.319325 0.947645i \(-0.396544\pi\)
0.319325 + 0.947645i \(0.396544\pi\)
\(102\) 0 0
\(103\) −0.573005 1.12459i −0.0564599 0.110809i 0.861052 0.508516i \(-0.169806\pi\)
−0.917512 + 0.397708i \(0.869806\pi\)
\(104\) 7.01225 + 1.12752i 0.687608 + 0.110563i
\(105\) 0 0
\(106\) −10.4714 + 12.9105i −1.01708 + 1.25398i
\(107\) −6.53996 6.53996i −0.632242 0.632242i 0.316388 0.948630i \(-0.397530\pi\)
−0.948630 + 0.316388i \(0.897530\pi\)
\(108\) 0 0
\(109\) 6.79692 9.35516i 0.651027 0.896062i −0.348116 0.937452i \(-0.613178\pi\)
0.999143 + 0.0413893i \(0.0131784\pi\)
\(110\) −9.60675 + 15.2870i −0.915968 + 1.45756i
\(111\) 0 0
\(112\) 3.69274 4.53106i 0.348931 0.428144i
\(113\) 1.59498 + 10.0703i 0.150043 + 0.947335i 0.941721 + 0.336396i \(0.109208\pi\)
−0.791677 + 0.610939i \(0.790792\pi\)
\(114\) 0 0
\(115\) −0.626379 0.122907i −0.0584101 0.0114611i
\(116\) 8.72765 5.02070i 0.810342 0.466160i
\(117\) 0 0
\(118\) 17.6292 + 3.76163i 1.62290 + 0.346287i
\(119\) −2.16003 6.64790i −0.198010 0.609412i
\(120\) 0 0
\(121\) −6.67422 + 20.5411i −0.606747 + 1.86738i
\(122\) 7.68126 13.2803i 0.695429 1.20234i
\(123\) 0 0
\(124\) 2.80305 6.26930i 0.251721 0.563000i
\(125\) 1.22771 11.1127i 0.109810 0.993953i
\(126\) 0 0
\(127\) −9.78669 1.55006i −0.868428 0.137546i −0.293708 0.955895i \(-0.594889\pi\)
−0.574721 + 0.818350i \(0.694889\pi\)
\(128\) 11.0534 + 2.41288i 0.976993 + 0.213270i
\(129\) 0 0
\(130\) −6.81688 + 4.07234i −0.597880 + 0.357168i
\(131\) 0.0826706 0.0268613i 0.00722296 0.00234688i −0.305403 0.952223i \(-0.598791\pi\)
0.312626 + 0.949876i \(0.398791\pi\)
\(132\) 0 0
\(133\) 3.70824 7.27783i 0.321545 0.631068i
\(134\) 0.0898420 1.68898i 0.00776116 0.145906i
\(135\) 0 0
\(136\) 9.58923 9.54429i 0.822270 0.818416i
\(137\) 7.65388 1.21226i 0.653915 0.103570i 0.179343 0.983787i \(-0.442603\pi\)
0.474572 + 0.880217i \(0.342603\pi\)
\(138\) 0 0
\(139\) 12.0808 8.77720i 1.02468 0.744473i 0.0574418 0.998349i \(-0.481706\pi\)
0.967237 + 0.253876i \(0.0817056\pi\)
\(140\) 0.0922509 + 6.53452i 0.00779663 + 0.552268i
\(141\) 0 0
\(142\) 16.5220 1.72345i 1.38650 0.144629i
\(143\) −10.1377 + 10.1377i −0.847753 + 0.847753i
\(144\) 0 0
\(145\) −3.86891 + 10.5715i −0.321295 + 0.877911i
\(146\) −20.2423 + 5.40692i −1.67526 + 0.447480i
\(147\) 0 0
\(148\) −4.00224 + 6.14183i −0.328982 + 0.504855i
\(149\) 6.14079i 0.503073i −0.967848 0.251537i \(-0.919064\pi\)
0.967848 0.251537i \(-0.0809359\pi\)
\(150\) 0 0
\(151\) 22.7591i 1.85211i 0.377392 + 0.926053i \(0.376821\pi\)
−0.377392 + 0.926053i \(0.623179\pi\)
\(152\) 15.8097 + 0.0371404i 1.28233 + 0.00301248i
\(153\) 0 0
\(154\) 3.04494 + 11.3996i 0.245368 + 0.918604i
\(155\) 2.10327 + 7.38429i 0.168939 + 0.593120i
\(156\) 0 0
\(157\) −9.18517 + 9.18517i −0.733057 + 0.733057i −0.971224 0.238167i \(-0.923453\pi\)
0.238167 + 0.971224i \(0.423453\pi\)
\(158\) −0.267794 2.56722i −0.0213045 0.204237i
\(159\) 0 0
\(160\) −11.2021 + 5.87480i −0.885603 + 0.464444i
\(161\) −0.337486 + 0.245198i −0.0265976 + 0.0193243i
\(162\) 0 0
\(163\) −23.4305 + 3.71102i −1.83521 + 0.290669i −0.975483 0.220076i \(-0.929369\pi\)
−0.859732 + 0.510745i \(0.829369\pi\)
\(164\) −0.439063 + 0.0926073i −0.0342851 + 0.00723141i
\(165\) 0 0
\(166\) 4.30442 + 0.228965i 0.334088 + 0.0177711i
\(167\) 4.60373 9.03534i 0.356248 0.699175i −0.641438 0.767175i \(-0.721662\pi\)
0.997685 + 0.0679997i \(0.0216617\pi\)
\(168\) 0 0
\(169\) 6.36696 2.06875i 0.489766 0.159135i
\(170\) −1.35683 + 15.0654i −0.104064 + 1.15547i
\(171\) 0 0
\(172\) 0.101587 + 1.99828i 0.00774596 + 0.152367i
\(173\) −8.63186 1.36715i −0.656268 0.103943i −0.180585 0.983559i \(-0.557799\pi\)
−0.475683 + 0.879617i \(0.657799\pi\)
\(174\) 0 0
\(175\) −4.77397 5.53126i −0.360878 0.418124i
\(176\) −17.0197 + 15.2283i −1.28291 + 1.14788i
\(177\) 0 0
\(178\) 15.5888 + 9.01647i 1.16843 + 0.675813i
\(179\) 5.04948 15.5407i 0.377416 1.16157i −0.564418 0.825489i \(-0.690899\pi\)
0.941834 0.336078i \(-0.109101\pi\)
\(180\) 0 0
\(181\) −5.68758 17.5046i −0.422755 1.30110i −0.905128 0.425139i \(-0.860225\pi\)
0.482374 0.875966i \(-0.339775\pi\)
\(182\) −1.08290 + 5.07510i −0.0802699 + 0.376191i
\(183\) 0 0
\(184\) −0.718555 0.368251i −0.0529726 0.0271478i
\(185\) −0.984440 8.13670i −0.0723775 0.598222i
\(186\) 0 0
\(187\) 4.27234 + 26.9745i 0.312424 + 1.97257i
\(188\) 3.23536 11.9993i 0.235963 0.875141i
\(189\) 0 0
\(190\) −13.5694 + 11.3272i −0.984429 + 0.821759i
\(191\) −10.3043 + 14.1827i −0.745595 + 1.02622i 0.252682 + 0.967549i \(0.418687\pi\)
−0.998277 + 0.0586743i \(0.981313\pi\)
\(192\) 0 0
\(193\) −16.0574 16.0574i −1.15584 1.15584i −0.985362 0.170475i \(-0.945470\pi\)
−0.170475 0.985362i \(-0.554530\pi\)
\(194\) −6.04077 4.89956i −0.433702 0.351768i
\(195\) 0 0
\(196\) −7.21997 6.52139i −0.515712 0.465814i
\(197\) 6.26169 + 12.2893i 0.446127 + 0.875573i 0.999102 + 0.0423753i \(0.0134925\pi\)
−0.552975 + 0.833198i \(0.686507\pi\)
\(198\) 0 0
\(199\) −22.2639 −1.57825 −0.789124 0.614233i \(-0.789465\pi\)
−0.789124 + 0.614233i \(0.789465\pi\)
\(200\) 5.37488 13.0809i 0.380062 0.924961i
\(201\) 0 0
\(202\) −8.29507 + 3.68542i −0.583639 + 0.259306i
\(203\) 3.33990 + 6.55492i 0.234415 + 0.460065i
\(204\) 0 0
\(205\) 0.309569 0.394788i 0.0216213 0.0275732i
\(206\) 1.38629 + 1.12439i 0.0965873 + 0.0783401i
\(207\) 0 0
\(208\) −9.71005 + 2.56923i −0.673271 + 0.178144i
\(209\) −18.7584 + 25.8187i −1.29754 + 1.78591i
\(210\) 0 0
\(211\) −1.75573 2.41656i −0.120870 0.166363i 0.744294 0.667852i \(-0.232786\pi\)
−0.865164 + 0.501489i \(0.832786\pi\)
\(212\) 6.12008 22.6982i 0.420329 1.55892i
\(213\) 0 0
\(214\) 12.2075 + 4.69699i 0.834487 + 0.321079i
\(215\) −1.52275 1.63876i −0.103851 0.111762i
\(216\) 0 0
\(217\) 4.47080 + 2.27799i 0.303498 + 0.154640i
\(218\) −3.41259 + 15.9934i −0.231130 + 1.08321i
\(219\) 0 0
\(220\) 3.63794 25.2731i 0.245270 1.70391i
\(221\) −3.71171 + 11.4235i −0.249677 + 0.768426i
\(222\) 0 0
\(223\) −2.70165 + 17.0575i −0.180916 + 1.14226i 0.715359 + 0.698757i \(0.246263\pi\)
−0.896275 + 0.443499i \(0.853737\pi\)
\(224\) −2.17075 + 7.97630i −0.145039 + 0.532939i
\(225\) 0 0
\(226\) −7.84373 12.0990i −0.521757 0.804815i
\(227\) 20.3606 + 3.22480i 1.35138 + 0.214037i 0.789789 0.613378i \(-0.210190\pi\)
0.561590 + 0.827416i \(0.310190\pi\)
\(228\) 0 0
\(229\) 12.6221 + 4.10118i 0.834095 + 0.271014i 0.694769 0.719233i \(-0.255507\pi\)
0.139326 + 0.990247i \(0.455507\pi\)
\(230\) 0.880104 0.200822i 0.0580324 0.0132418i
\(231\) 0 0
\(232\) −8.39671 + 11.5002i −0.551271 + 0.755023i
\(233\) −0.909143 + 1.78429i −0.0595599 + 0.116893i −0.918867 0.394566i \(-0.870895\pi\)
0.859308 + 0.511459i \(0.170895\pi\)
\(234\) 0 0
\(235\) 5.84987 + 12.6033i 0.381603 + 0.822149i
\(236\) −24.9439 + 5.26117i −1.62371 + 0.342473i
\(237\) 0 0
\(238\) 6.60885 + 7.35144i 0.428388 + 0.476523i
\(239\) 9.83649 7.14663i 0.636270 0.462277i −0.222297 0.974979i \(-0.571355\pi\)
0.858567 + 0.512702i \(0.171355\pi\)
\(240\) 0 0
\(241\) 12.0473 + 8.75288i 0.776035 + 0.563823i 0.903786 0.427984i \(-0.140776\pi\)
−0.127751 + 0.991806i \(0.540776\pi\)
\(242\) −3.16898 30.3797i −0.203710 1.95288i
\(243\) 0 0
\(244\) −2.30169 + 21.5740i −0.147351 + 1.38114i
\(245\) 10.8702 + 0.398868i 0.694472 + 0.0254827i
\(246\) 0 0
\(247\) −12.5059 + 6.37208i −0.795732 + 0.405446i
\(248\) −0.0228155 + 9.71194i −0.00144879 + 0.616709i
\(249\) 0 0
\(250\) 4.79425 + 15.0670i 0.303215 + 0.952922i
\(251\) 2.53046i 0.159721i 0.996806 + 0.0798606i \(0.0254475\pi\)
−0.996806 + 0.0798606i \(0.974552\pi\)
\(252\) 0 0
\(253\) 1.45222 0.739945i 0.0913005 0.0465199i
\(254\) 13.5383 3.61623i 0.849472 0.226902i
\(255\) 0 0
\(256\) −15.6709 + 3.22848i −0.979431 + 0.201780i
\(257\) −5.19094 + 5.19094i −0.323802 + 0.323802i −0.850224 0.526422i \(-0.823533\pi\)
0.526422 + 0.850224i \(0.323533\pi\)
\(258\) 0 0
\(259\) −4.33329 3.14832i −0.269258 0.195627i
\(260\) 6.47179 9.17734i 0.401363 0.569154i
\(261\) 0 0
\(262\) −0.0914195 + 0.0821850i −0.00564792 + 0.00507740i
\(263\) −22.7729 + 3.60687i −1.40424 + 0.222409i −0.812142 0.583459i \(-0.801699\pi\)
−0.592094 + 0.805869i \(0.701699\pi\)
\(264\) 0 0
\(265\) 11.0657 + 23.8407i 0.679763 + 1.46452i
\(266\) −0.613588 + 11.5351i −0.0376215 + 0.707264i
\(267\) 0 0
\(268\) 0.853702 + 2.23442i 0.0521481 + 0.136489i
\(269\) −3.53603 + 1.14893i −0.215596 + 0.0700513i −0.414823 0.909902i \(-0.636157\pi\)
0.199228 + 0.979953i \(0.436157\pi\)
\(270\) 0 0
\(271\) 27.3547 + 8.88808i 1.66168 + 0.539912i 0.981223 0.192877i \(-0.0617817\pi\)
0.680456 + 0.732789i \(0.261782\pi\)
\(272\) −6.91278 + 17.8412i −0.419149 + 1.08178i
\(273\) 0 0
\(274\) −9.19578 + 5.96158i −0.555538 + 0.360152i
\(275\) 15.0420 + 24.2630i 0.907067 + 1.46311i
\(276\) 0 0
\(277\) 3.29668 20.8144i 0.198078 1.25062i −0.665499 0.746399i \(-0.731781\pi\)
0.863577 0.504217i \(-0.168219\pi\)
\(278\) −10.5733 + 18.2804i −0.634145 + 1.09639i
\(279\) 0 0
\(280\) −3.87135 8.39223i −0.231357 0.501532i
\(281\) 5.22821 + 16.0908i 0.311889 + 0.959895i 0.977016 + 0.213165i \(0.0683773\pi\)
−0.665127 + 0.746730i \(0.731623\pi\)
\(282\) 0 0
\(283\) −27.5538 14.0394i −1.63791 0.834554i −0.997802 0.0662657i \(-0.978892\pi\)
−0.640103 0.768289i \(-0.721108\pi\)
\(284\) −20.3634 + 11.7143i −1.20835 + 0.695118i
\(285\) 0 0
\(286\) 7.28084 18.9229i 0.430525 1.11894i
\(287\) −0.0512888 0.323825i −0.00302748 0.0191148i
\(288\) 0 0
\(289\) 3.45668 + 4.75771i 0.203334 + 0.279865i
\(290\) −1.06997 15.8841i −0.0628307 0.932744i
\(291\) 0 0
\(292\) 23.0564 18.6110i 1.34928 1.08913i
\(293\) 5.18767 + 5.18767i 0.303067 + 0.303067i 0.842213 0.539146i \(-0.181253\pi\)
−0.539146 + 0.842213i \(0.681253\pi\)
\(294\) 0 0
\(295\) 17.5871 22.4285i 1.02396 1.30584i
\(296\) 1.64585 10.2358i 0.0956629 0.594942i
\(297\) 0 0
\(298\) 3.52605 + 7.93635i 0.204258 + 0.459741i
\(299\) 0.716822 0.0414549
\(300\) 0 0
\(301\) −1.46194 −0.0842646
\(302\) −13.0683 29.4138i −0.751995 1.69257i
\(303\) 0 0
\(304\) −20.4537 + 9.02992i −1.17310 + 0.517902i
\(305\) −13.5289 20.1343i −0.774665 1.15289i
\(306\) 0 0
\(307\) 16.7528 + 16.7528i 0.956134 + 0.956134i 0.999077 0.0429439i \(-0.0136737\pi\)
−0.0429439 + 0.999077i \(0.513674\pi\)
\(308\) −10.4809 12.9844i −0.597206 0.739854i
\(309\) 0 0
\(310\) −6.95832 8.33575i −0.395206 0.473439i
\(311\) −7.57416 10.4249i −0.429491 0.591144i 0.538345 0.842724i \(-0.319050\pi\)
−0.967836 + 0.251581i \(0.919050\pi\)
\(312\) 0 0
\(313\) 0.639006 + 4.03453i 0.0361188 + 0.228045i 0.999144 0.0413661i \(-0.0131710\pi\)
−0.963025 + 0.269411i \(0.913171\pi\)
\(314\) 6.59677 17.1450i 0.372277 0.967550i
\(315\) 0 0
\(316\) 1.82020 + 3.16411i 0.102394 + 0.177995i
\(317\) −22.1205 11.2710i −1.24241 0.633041i −0.295749 0.955266i \(-0.595569\pi\)
−0.946663 + 0.322225i \(0.895569\pi\)
\(318\) 0 0
\(319\) −8.88227 27.3368i −0.497312 1.53057i
\(320\) 11.1042 14.0248i 0.620746 0.784012i
\(321\) 0 0
\(322\) 0.295373 0.510677i 0.0164605 0.0284589i
\(323\) −4.18261 + 26.4080i −0.232727 + 1.46938i
\(324\) 0 0
\(325\) 1.04996 + 12.5113i 0.0582415 + 0.694001i
\(326\) 28.1506 18.2499i 1.55912 1.01077i
\(327\) 0 0
\(328\) 0.514269 0.371796i 0.0283958 0.0205290i
\(329\) 8.63603 + 2.80602i 0.476120 + 0.154701i
\(330\) 0 0
\(331\) 23.2371 7.55019i 1.27723 0.414996i 0.409624 0.912254i \(-0.365660\pi\)
0.867603 + 0.497258i \(0.165660\pi\)
\(332\) −5.69450 + 2.17569i −0.312526 + 0.119406i
\(333\) 0 0
\(334\) −0.761763 + 14.3207i −0.0416818 + 0.783595i
\(335\) −2.33668 1.30066i −0.127667 0.0710626i
\(336\) 0 0
\(337\) −20.2026 + 3.19977i −1.10050 + 0.174303i −0.680161 0.733063i \(-0.738090\pi\)
−0.420343 + 0.907365i \(0.638090\pi\)
\(338\) −7.04077 + 6.32957i −0.382968 + 0.344283i
\(339\) 0 0
\(340\) −6.89702 20.2496i −0.374043 1.09819i
\(341\) −15.8605 11.5233i −0.858894 0.624023i
\(342\) 0 0
\(343\) 12.2597 12.2597i 0.661961 0.661961i
\(344\) −1.27870 2.52424i −0.0689431 0.136098i
\(345\) 0 0
\(346\) 11.9408 3.18951i 0.641942 0.171469i
\(347\) 11.0443 5.62737i 0.592891 0.302093i −0.131681 0.991292i \(-0.542037\pi\)
0.724572 + 0.689199i \(0.242037\pi\)
\(348\) 0 0
\(349\) 8.74739i 0.468237i −0.972208 0.234119i \(-0.924780\pi\)
0.972208 0.234119i \(-0.0752204\pi\)
\(350\) 9.34592 + 4.40737i 0.499560 + 0.235584i
\(351\) 0 0
\(352\) 13.2521 29.4538i 0.706339 1.56989i
\(353\) −2.59436 + 1.32189i −0.138084 + 0.0703573i −0.521668 0.853149i \(-0.674690\pi\)
0.383583 + 0.923506i \(0.374690\pi\)
\(354\) 0 0
\(355\) 9.02696 24.6654i 0.479101 1.30910i
\(356\) −25.3242 2.70178i −1.34218 0.143194i
\(357\) 0 0
\(358\) 2.39754 + 22.9842i 0.126714 + 1.21475i
\(359\) 7.90914 + 5.74633i 0.417428 + 0.303279i 0.776602 0.629991i \(-0.216942\pi\)
−0.359174 + 0.933271i \(0.616942\pi\)
\(360\) 0 0
\(361\) −9.90511 + 7.19648i −0.521322 + 0.378762i
\(362\) 17.4018 + 19.3571i 0.914616 + 1.01738i
\(363\) 0 0
\(364\) −1.51459 7.18085i −0.0793859 0.376379i
\(365\) −6.37868 + 32.5081i −0.333875 + 1.70155i
\(366\) 0 0
\(367\) −7.02642 + 13.7901i −0.366776 + 0.719839i −0.998465 0.0553831i \(-0.982362\pi\)
0.631689 + 0.775222i \(0.282362\pi\)
\(368\) 1.14011 + 0.0633322i 0.0594323 + 0.00330142i
\(369\) 0 0
\(370\) 5.94438 + 9.95059i 0.309034 + 0.517306i
\(371\) 16.3361 + 5.30792i 0.848128 + 0.275574i
\(372\) 0 0
\(373\) −14.4174 2.28349i −0.746503 0.118234i −0.228418 0.973563i \(-0.573355\pi\)
−0.518086 + 0.855329i \(0.673355\pi\)
\(374\) −21.0103 32.4086i −1.08642 1.67581i
\(375\) 0 0
\(376\) 2.70865 + 17.3657i 0.139688 + 0.895565i
\(377\) 1.97757 12.4859i 0.101850 0.643057i
\(378\) 0 0
\(379\) 5.11250 15.7347i 0.262612 0.808235i −0.729622 0.683850i \(-0.760304\pi\)
0.992234 0.124385i \(-0.0396958\pi\)
\(380\) 11.0330 22.4308i 0.565982 1.15068i
\(381\) 0 0
\(382\) 5.17359 24.2464i 0.264704 1.24056i
\(383\) 33.2588 + 16.9462i 1.69945 + 0.865911i 0.986313 + 0.164883i \(0.0527247\pi\)
0.713134 + 0.701028i \(0.247275\pi\)
\(384\) 0 0
\(385\) 18.3071 + 3.59220i 0.933018 + 0.183075i
\(386\) 29.9727 + 11.5324i 1.52557 + 0.586983i
\(387\) 0 0
\(388\) 10.6204 + 2.86357i 0.539170 + 0.145376i
\(389\) 15.3486 + 21.1256i 0.778207 + 1.07111i 0.995477 + 0.0949990i \(0.0302848\pi\)
−0.217270 + 0.976112i \(0.569715\pi\)
\(390\) 0 0
\(391\) 0.802621 1.10471i 0.0405903 0.0558677i
\(392\) 13.0757 + 4.28253i 0.660421 + 0.216300i
\(393\) 0 0
\(394\) −15.1491 12.2871i −0.763200 0.619018i
\(395\) −3.83256 1.40263i −0.192837 0.0705739i
\(396\) 0 0
\(397\) −12.4142 24.3642i −0.623050 1.22280i −0.959661 0.281160i \(-0.909281\pi\)
0.336611 0.941644i \(-0.390719\pi\)
\(398\) 28.7739 12.7840i 1.44230 0.640802i
\(399\) 0 0
\(400\) 0.564587 + 19.9920i 0.0282293 + 0.999601i
\(401\) −17.4002 −0.868927 −0.434463 0.900690i \(-0.643062\pi\)
−0.434463 + 0.900690i \(0.643062\pi\)
\(402\) 0 0
\(403\) −3.91440 7.68243i −0.194990 0.382689i
\(404\) 8.60437 9.52607i 0.428083 0.473940i
\(405\) 0 0
\(406\) −8.08032 6.55379i −0.401019 0.325259i
\(407\) 14.7979 + 14.7979i 0.733506 + 0.733506i
\(408\) 0 0
\(409\) −0.523349 + 0.720329i −0.0258780 + 0.0356180i −0.821760 0.569834i \(-0.807008\pi\)
0.795882 + 0.605452i \(0.207008\pi\)
\(410\) −0.173399 + 0.687978i −0.00856359 + 0.0339768i
\(411\) 0 0
\(412\) −2.43726 0.657156i −0.120075 0.0323757i
\(413\) −2.91380 18.3970i −0.143379 0.905259i
\(414\) 0 0
\(415\) 3.31477 5.95512i 0.162716 0.292325i
\(416\) 11.0740 8.89599i 0.542948 0.436162i
\(417\) 0 0
\(418\) 9.41818 44.1391i 0.460658 2.15891i
\(419\) 1.80356 + 5.55080i 0.0881098 + 0.271174i 0.985397 0.170273i \(-0.0544651\pi\)
−0.897287 + 0.441448i \(0.854465\pi\)
\(420\) 0 0
\(421\) 1.31250 4.03945i 0.0639672 0.196871i −0.913965 0.405793i \(-0.866995\pi\)
0.977932 + 0.208922i \(0.0669955\pi\)
\(422\) 3.65670 + 2.11502i 0.178005 + 0.102957i
\(423\) 0 0
\(424\) 5.12374 + 32.8493i 0.248831 + 1.59530i
\(425\) 20.4571 + 12.3907i 0.992315 + 0.601036i
\(426\) 0 0
\(427\) −15.6574 2.47990i −0.757717 0.120011i
\(428\) −18.4740 + 0.939169i −0.892972 + 0.0453964i
\(429\) 0 0
\(430\) 2.90898 + 1.24356i 0.140283 + 0.0599699i
\(431\) 2.24421 0.729187i 0.108100 0.0351237i −0.254468 0.967081i \(-0.581900\pi\)
0.362567 + 0.931958i \(0.381900\pi\)
\(432\) 0 0
\(433\) −0.790129 + 1.55072i −0.0379712 + 0.0745226i −0.909213 0.416332i \(-0.863315\pi\)
0.871241 + 0.490855i \(0.163315\pi\)
\(434\) −7.08607 0.376930i −0.340142 0.0180932i
\(435\) 0 0
\(436\) −4.77299 22.6294i −0.228585 1.08375i
\(437\) 1.57599 0.249613i 0.0753900 0.0119406i
\(438\) 0 0
\(439\) 1.04510 0.759313i 0.0498801 0.0362400i −0.562566 0.826752i \(-0.690186\pi\)
0.612446 + 0.790512i \(0.290186\pi\)
\(440\) 9.81017 + 34.7518i 0.467681 + 1.65673i
\(441\) 0 0
\(442\) −1.76235 16.8949i −0.0838267 0.803610i
\(443\) 25.3395 25.3395i 1.20392 1.20392i 0.230952 0.972965i \(-0.425816\pi\)
0.972965 0.230952i \(-0.0741842\pi\)
\(444\) 0 0
\(445\) 23.6341 15.8806i 1.12037 0.752814i
\(446\) −6.30284 23.5964i −0.298448 1.11732i
\(447\) 0 0
\(448\) −1.77452 11.5550i −0.0838383 0.545923i
\(449\) 41.8596i 1.97548i −0.156115 0.987739i \(-0.549897\pi\)
0.156115 0.987739i \(-0.450103\pi\)
\(450\) 0 0
\(451\) 1.28099i 0.0603194i
\(452\) 17.0845 + 11.1329i 0.803587 + 0.523646i
\(453\) 0 0
\(454\) −28.1657 + 7.52333i −1.32188 + 0.353088i
\(455\) 6.45673 + 5.06299i 0.302696 + 0.237357i
\(456\) 0 0
\(457\) −1.59546 + 1.59546i −0.0746326 + 0.0746326i −0.743438 0.668805i \(-0.766806\pi\)
0.668805 + 0.743438i \(0.266806\pi\)
\(458\) −18.6677 + 1.94728i −0.872286 + 0.0909904i
\(459\) 0 0
\(460\) −1.02213 + 0.764899i −0.0476572 + 0.0356636i
\(461\) 8.02498 5.83049i 0.373761 0.271553i −0.385008 0.922913i \(-0.625801\pi\)
0.758769 + 0.651360i \(0.225801\pi\)
\(462\) 0 0
\(463\) 7.69820 1.21927i 0.357766 0.0566645i 0.0250354 0.999687i \(-0.492030\pi\)
0.332730 + 0.943022i \(0.392030\pi\)
\(464\) 4.24849 19.6842i 0.197231 0.913815i
\(465\) 0 0
\(466\) 0.150432 2.82805i 0.00696865 0.131007i
\(467\) 0.287105 0.563475i 0.0132856 0.0260745i −0.884268 0.466979i \(-0.845342\pi\)
0.897554 + 0.440905i \(0.145342\pi\)
\(468\) 0 0
\(469\) −1.66215 + 0.540067i −0.0767511 + 0.0249380i
\(470\) −14.7972 12.9295i −0.682543 0.596393i
\(471\) 0 0
\(472\) 29.2165 21.1223i 1.34480 0.972234i
\(473\) 5.64161 + 0.893544i 0.259402 + 0.0410852i
\(474\) 0 0
\(475\) 6.66514 + 27.1415i 0.305817 + 1.24534i
\(476\) −12.7625 5.70618i −0.584967 0.261542i
\(477\) 0 0
\(478\) −8.60907 + 14.8844i −0.393770 + 0.680797i
\(479\) −8.38706 + 25.8127i −0.383214 + 1.17941i 0.554553 + 0.832148i \(0.312889\pi\)
−0.937767 + 0.347264i \(0.887111\pi\)
\(480\) 0 0
\(481\) 2.84418 + 8.75348i 0.129683 + 0.399124i
\(482\) −20.5958 4.39464i −0.938114 0.200170i
\(483\) 0 0
\(484\) 21.5396 + 37.4430i 0.979073 + 1.70195i
\(485\) −11.1550 + 5.17763i −0.506522 + 0.235104i
\(486\) 0 0
\(487\) −0.993204 6.27084i −0.0450064 0.284159i 0.954913 0.296887i \(-0.0959485\pi\)
−0.999919 + 0.0127279i \(0.995948\pi\)
\(488\) −9.41313 29.2039i −0.426112 1.32200i
\(489\) 0 0
\(490\) −14.2777 + 5.72619i −0.645000 + 0.258683i
\(491\) −15.5886 + 21.4558i −0.703502 + 0.968288i 0.296410 + 0.955061i \(0.404210\pi\)
−0.999913 + 0.0132269i \(0.995790\pi\)
\(492\) 0 0
\(493\) −17.0281 17.0281i −0.766906 0.766906i
\(494\) 12.5038 15.4162i 0.562571 0.693607i
\(495\) 0 0
\(496\) −5.54712 12.5648i −0.249073 0.564176i
\(497\) −7.79268 15.2940i −0.349549 0.686029i
\(498\) 0 0
\(499\) 2.17786 0.0974943 0.0487471 0.998811i \(-0.484477\pi\)
0.0487471 + 0.998811i \(0.484477\pi\)
\(500\) −14.8476 16.7197i −0.664003 0.747729i
\(501\) 0 0
\(502\) −1.45299 3.27036i −0.0648502 0.145963i
\(503\) 2.44023 + 4.78922i 0.108804 + 0.213541i 0.938988 0.343949i \(-0.111765\pi\)
−0.830184 + 0.557490i \(0.811765\pi\)
\(504\) 0 0
\(505\) −0.526269 + 14.3422i −0.0234187 + 0.638221i
\(506\) −1.45197 + 1.79017i −0.0645482 + 0.0795828i
\(507\) 0 0
\(508\) −15.4205 + 12.4473i −0.684174 + 0.552261i
\(509\) −5.20682 + 7.16658i −0.230788 + 0.317653i −0.908668 0.417520i \(-0.862899\pi\)
0.677879 + 0.735173i \(0.262899\pi\)
\(510\) 0 0
\(511\) 12.7254 + 17.5150i 0.562937 + 0.774816i
\(512\) 18.3992 13.1707i 0.813139 0.582069i
\(513\) 0 0
\(514\) 3.72812 9.68940i 0.164440 0.427381i
\(515\) 2.55994 1.18821i 0.112804 0.0523586i
\(516\) 0 0
\(517\) −31.6114 16.1068i −1.39027 0.708377i
\(518\) 7.40811 + 1.58071i 0.325494 + 0.0694523i
\(519\) 0 0
\(520\) −3.09449 + 15.5769i −0.135702 + 0.683091i
\(521\) −5.57418 + 17.1556i −0.244209 + 0.751599i 0.751556 + 0.659669i \(0.229304\pi\)
−0.995765 + 0.0919301i \(0.970696\pi\)
\(522\) 0 0
\(523\) −5.95692 + 37.6105i −0.260478 + 1.64459i 0.416896 + 0.908954i \(0.363118\pi\)
−0.677374 + 0.735639i \(0.736882\pi\)
\(524\) 0.0709598 0.158709i 0.00309989 0.00693323i
\(525\) 0 0
\(526\) 27.3606 17.7377i 1.19298 0.773402i
\(527\) −16.2225 2.56939i −0.706664 0.111925i
\(528\) 0 0
\(529\) 21.7968 + 7.08221i 0.947687 + 0.307922i
\(530\) −27.9907 24.4577i −1.21584 1.06238i
\(531\) 0 0
\(532\) −5.83048 15.2603i −0.252783 0.661618i
\(533\) −0.255771 + 0.501978i −0.0110787 + 0.0217431i
\(534\) 0 0
\(535\) 15.1502 14.0777i 0.655001 0.608633i
\(536\) −2.38633 2.39757i −0.103074 0.103559i
\(537\) 0 0
\(538\) 3.91025 3.51526i 0.168583 0.151554i
\(539\) −22.4698 + 16.3253i −0.967844 + 0.703180i
\(540\) 0 0
\(541\) −7.71293 5.60377i −0.331605 0.240925i 0.409506 0.912307i \(-0.365701\pi\)
−0.741111 + 0.671382i \(0.765701\pi\)
\(542\) −40.4567 + 4.22014i −1.73776 + 0.181271i
\(543\) 0 0
\(544\) −1.31035 27.0272i −0.0561806 1.15878i
\(545\) 20.3474 + 15.9552i 0.871587 + 0.683447i
\(546\) 0 0
\(547\) 9.36904 4.77376i 0.400591 0.204111i −0.242075 0.970257i \(-0.577828\pi\)
0.642666 + 0.766146i \(0.277828\pi\)
\(548\) 8.46147 12.9850i 0.361456 0.554690i
\(549\) 0 0
\(550\) −33.3721 22.7203i −1.42299 0.968799i
\(551\) 28.1400i 1.19880i
\(552\) 0 0
\(553\) −2.37641 + 1.21084i −0.101055 + 0.0514903i
\(554\) 7.69102 + 28.7934i 0.326760 + 1.22332i
\(555\) 0 0
\(556\) 3.16829 29.6968i 0.134365 1.25943i
\(557\) −17.1166 + 17.1166i −0.725256 + 0.725256i −0.969671 0.244415i \(-0.921404\pi\)
0.244415 + 0.969671i \(0.421404\pi\)
\(558\) 0 0
\(559\) 2.03236 + 1.47659i 0.0859595 + 0.0624532i
\(560\) 9.82215 + 8.62317i 0.415062 + 0.364396i
\(561\) 0 0
\(562\) −15.9963 17.7937i −0.674762 0.750580i
\(563\) −7.44499 + 1.17917i −0.313769 + 0.0496961i −0.311333 0.950301i \(-0.600775\pi\)
−0.00243601 + 0.999997i \(0.500775\pi\)
\(564\) 0 0
\(565\) −22.6335 + 2.73838i −0.952200 + 0.115204i
\(566\) 43.6720 + 2.32304i 1.83567 + 0.0976448i
\(567\) 0 0
\(568\) 19.5913 26.8323i 0.822031 1.12586i
\(569\) −14.1155 + 4.58639i −0.591751 + 0.192271i −0.589558 0.807726i \(-0.700698\pi\)
−0.00219278 + 0.999998i \(0.500698\pi\)
\(570\) 0 0
\(571\) 8.54065 + 2.77502i 0.357415 + 0.116131i 0.482220 0.876050i \(-0.339831\pi\)
−0.124805 + 0.992181i \(0.539831\pi\)
\(572\) 1.45581 + 28.6366i 0.0608707 + 1.19736i
\(573\) 0 0
\(574\) 0.252226 + 0.389061i 0.0105277 + 0.0162391i
\(575\) 0.326003 1.38961i 0.0135953 0.0579506i
\(576\) 0 0
\(577\) −0.765580 + 4.83368i −0.0318715 + 0.201229i −0.998486 0.0550063i \(-0.982482\pi\)
0.966615 + 0.256235i \(0.0824821\pi\)
\(578\) −7.19928 4.16403i −0.299451 0.173201i
\(579\) 0 0
\(580\) 10.5035 + 19.9142i 0.436132 + 0.826890i
\(581\) −1.37638 4.23605i −0.0571017 0.175741i
\(582\) 0 0
\(583\) −59.7968 30.4680i −2.47653 1.26186i
\(584\) −19.1116 + 37.2919i −0.790845 + 1.54315i
\(585\) 0 0
\(586\) −9.68331 3.72578i −0.400014 0.153910i
\(587\) 0.200727 + 1.26734i 0.00828489 + 0.0523087i 0.991484 0.130225i \(-0.0415700\pi\)
−0.983200 + 0.182534i \(0.941570\pi\)
\(588\) 0 0
\(589\) −11.2813 15.5274i −0.464839 0.639796i
\(590\) −9.85111 + 39.0852i −0.405564 + 1.60911i
\(591\) 0 0
\(592\) 3.75030 + 14.1737i 0.154136 + 0.582537i
\(593\) 20.9667 + 20.9667i 0.860997 + 0.860997i 0.991454 0.130457i \(-0.0416444\pi\)
−0.130457 + 0.991454i \(0.541644\pi\)
\(594\) 0 0
\(595\) 15.0323 4.28164i 0.616263 0.175530i
\(596\) −9.11412 8.23227i −0.373329 0.337207i
\(597\) 0 0
\(598\) −0.926419 + 0.411600i −0.0378841 + 0.0168316i
\(599\) 13.6348 0.557103 0.278552 0.960421i \(-0.410146\pi\)
0.278552 + 0.960421i \(0.410146\pi\)
\(600\) 0 0
\(601\) −0.304225 −0.0124096 −0.00620481 0.999981i \(-0.501975\pi\)
−0.00620481 + 0.999981i \(0.501975\pi\)
\(602\) 1.88940 0.839444i 0.0770063 0.0342132i
\(603\) 0 0
\(604\) 33.7788 + 30.5105i 1.37444 + 1.24146i
\(605\) −45.3532 16.5982i −1.84387 0.674814i
\(606\) 0 0
\(607\) 0.683237 + 0.683237i 0.0277317 + 0.0277317i 0.720837 0.693105i \(-0.243758\pi\)
−0.693105 + 0.720837i \(0.743758\pi\)
\(608\) 21.2494 23.4148i 0.861776 0.949595i
\(609\) 0 0
\(610\) 29.0459 + 18.2532i 1.17603 + 0.739050i
\(611\) −9.17149 12.6235i −0.371039 0.510691i
\(612\) 0 0
\(613\) −7.43217 46.9249i −0.300183 1.89528i −0.428494 0.903545i \(-0.640956\pi\)
0.128311 0.991734i \(-0.459044\pi\)
\(614\) −31.2708 12.0318i −1.26199 0.485565i
\(615\) 0 0
\(616\) 21.0012 + 10.7628i 0.846161 + 0.433648i
\(617\) 19.5932 + 9.98325i 0.788794 + 0.401910i 0.801489 0.598009i \(-0.204041\pi\)
−0.0126958 + 0.999919i \(0.504041\pi\)
\(618\) 0 0
\(619\) −11.5853 35.6558i −0.465651 1.43313i −0.858162 0.513379i \(-0.828394\pi\)
0.392511 0.919747i \(-0.371606\pi\)
\(620\) 13.7793 + 6.77763i 0.553391 + 0.272196i
\(621\) 0 0
\(622\) 15.7748 + 9.12408i 0.632513 + 0.365842i
\(623\) 2.91097 18.3791i 0.116625 0.736344i
\(624\) 0 0
\(625\) 24.7314 + 3.65458i 0.989258 + 0.146183i
\(626\) −3.14248 4.84730i −0.125599 0.193737i
\(627\) 0 0
\(628\) 1.31903 + 25.9461i 0.0526352 + 1.03536i
\(629\) 16.6748 + 5.41798i 0.664869 + 0.216029i
\(630\) 0 0
\(631\) −16.9430 + 5.50512i −0.674491 + 0.219155i −0.626182 0.779677i \(-0.715383\pi\)
−0.0483091 + 0.998832i \(0.515383\pi\)
\(632\) −4.16926 3.04413i −0.165844 0.121089i
\(633\) 0 0
\(634\) 35.0603 + 1.86496i 1.39242 + 0.0740672i
\(635\) 4.26616 21.7419i 0.169297 0.862801i
\(636\) 0 0
\(637\) −12.0648 + 1.91088i −0.478025 + 0.0757118i
\(638\) 27.1762 + 30.2298i 1.07592 + 1.19681i
\(639\) 0 0
\(640\) −6.29805 + 24.5017i −0.248952 + 0.968516i
\(641\) 0.146686 + 0.106574i 0.00579376 + 0.00420941i 0.590678 0.806907i \(-0.298860\pi\)
−0.584885 + 0.811117i \(0.698860\pi\)
\(642\) 0 0
\(643\) 10.2095 10.2095i 0.402622 0.402622i −0.476534 0.879156i \(-0.658107\pi\)
0.879156 + 0.476534i \(0.158107\pi\)
\(644\) −0.0885085 + 0.829602i −0.00348773 + 0.0326909i
\(645\) 0 0
\(646\) −9.75787 36.5313i −0.383918 1.43730i
\(647\) −28.0796 + 14.3073i −1.10392 + 0.562477i −0.908350 0.418211i \(-0.862657\pi\)
−0.195574 + 0.980689i \(0.562657\pi\)
\(648\) 0 0
\(649\) 72.7751i 2.85667i
\(650\) −8.54095 15.5667i −0.335004 0.610575i
\(651\) 0 0
\(652\) −25.9027 + 39.7502i −1.01443 + 1.55674i
\(653\) −8.96664 + 4.56873i −0.350892 + 0.178788i −0.620548 0.784168i \(-0.713090\pi\)
0.269657 + 0.962957i \(0.413090\pi\)
\(654\) 0 0
\(655\) 0.0532448 + 0.186935i 0.00208045 + 0.00730416i
\(656\) −0.451155 + 0.775802i −0.0176147 + 0.0302900i
\(657\) 0 0
\(658\) −12.7724 + 1.33232i −0.497920 + 0.0519393i
\(659\) −4.60974 3.34918i −0.179570 0.130465i 0.494369 0.869252i \(-0.335399\pi\)
−0.673939 + 0.738787i \(0.735399\pi\)
\(660\) 0 0
\(661\) 29.9339 21.7482i 1.16429 0.845909i 0.173979 0.984749i \(-0.444338\pi\)
0.990315 + 0.138841i \(0.0443375\pi\)
\(662\) −25.6963 + 23.1006i −0.998714 + 0.897831i
\(663\) 0 0
\(664\) 6.11028 6.08164i 0.237125 0.236013i
\(665\) 15.9587 + 8.88304i 0.618853 + 0.344469i
\(666\) 0 0
\(667\) −0.652450 + 1.28050i −0.0252629 + 0.0495813i
\(668\) −7.23847 18.9455i −0.280065 0.733023i
\(669\) 0 0
\(670\) 3.76677 + 0.339244i 0.145523 + 0.0131062i
\(671\) 58.9064 + 19.1398i 2.27406 + 0.738886i
\(672\) 0 0
\(673\) −4.01796 0.636382i −0.154881 0.0245307i 0.0785125 0.996913i \(-0.474983\pi\)
−0.233393 + 0.972382i \(0.574983\pi\)
\(674\) 24.2725 15.7357i 0.934940 0.606117i
\(675\) 0 0
\(676\) 5.46505 12.2231i 0.210194 0.470121i
\(677\) −2.28166 + 14.4058i −0.0876914 + 0.553662i 0.904254 + 0.426995i \(0.140428\pi\)
−0.991945 + 0.126667i \(0.959572\pi\)
\(678\) 0 0
\(679\) −2.48356 + 7.64361i −0.0953103 + 0.293335i
\(680\) 20.5411 + 22.2103i 0.787714 + 0.851728i
\(681\) 0 0
\(682\) 27.1148 + 5.78562i 1.03828 + 0.221543i
\(683\) −15.7458 8.02287i −0.602495 0.306986i 0.126008 0.992029i \(-0.459783\pi\)
−0.728503 + 0.685043i \(0.759783\pi\)
\(684\) 0 0
\(685\) 2.08129 + 17.2025i 0.0795219 + 0.657273i
\(686\) −8.80488 + 22.8839i −0.336172 + 0.873712i
\(687\) 0 0
\(688\) 3.10201 + 2.52809i 0.118263 + 0.0963826i
\(689\) −17.3490 23.8789i −0.660945 0.909712i
\(690\) 0 0
\(691\) −2.97580 + 4.09584i −0.113205 + 0.155813i −0.861860 0.507147i \(-0.830700\pi\)
0.748655 + 0.662960i \(0.230700\pi\)
\(692\) −13.6009 + 10.9785i −0.517028 + 0.417342i
\(693\) 0 0
\(694\) −11.0424 + 13.6145i −0.419165 + 0.516798i
\(695\) 18.6227 + 27.7150i 0.706398 + 1.05129i
\(696\) 0 0
\(697\) 0.487227 + 0.956237i 0.0184550 + 0.0362201i
\(698\) 5.02276 + 11.3051i 0.190114 + 0.427905i
\(699\) 0 0
\(700\) −14.6094 0.329653i −0.552182 0.0124597i
\(701\) 33.5634 1.26767 0.633836 0.773467i \(-0.281479\pi\)
0.633836 + 0.773467i \(0.281479\pi\)
\(702\) 0 0
\(703\) 9.30132 + 18.2549i 0.350806 + 0.688495i
\(704\) −0.214604 + 45.6754i −0.00808820 + 1.72146i
\(705\) 0 0
\(706\) 2.59392 3.19810i 0.0976234 0.120362i
\(707\) 6.63210 + 6.63210i 0.249426 + 0.249426i
\(708\) 0 0
\(709\) 11.9891 16.5016i 0.450260 0.619730i −0.522193 0.852827i \(-0.674886\pi\)
0.972453 + 0.233097i \(0.0748861\pi\)
\(710\) 2.49646 + 37.0608i 0.0936904 + 1.39087i
\(711\) 0 0
\(712\) 34.2803 11.0494i 1.28471 0.414093i
\(713\) 0.153338 + 0.968139i 0.00574256 + 0.0362571i
\(714\) 0 0
\(715\) −21.8220 23.4845i −0.816097 0.878270i
\(716\) −16.2961 28.3281i −0.609015 1.05867i
\(717\) 0 0
\(718\) −13.5213 2.88511i −0.504610 0.107671i
\(719\) −7.42311 22.8460i −0.276835 0.852012i −0.988728 0.149723i \(-0.952162\pi\)
0.711893 0.702288i \(-0.247838\pi\)
\(720\) 0 0
\(721\) 0.569949 1.75412i 0.0212260 0.0653269i
\(722\) 8.66912 14.9882i 0.322631 0.557805i
\(723\) 0 0
\(724\) −33.6048 15.0249i −1.24891 0.558398i
\(725\) −23.3054 9.51212i −0.865539 0.353271i
\(726\) 0 0
\(727\) 33.0708 + 5.23791i 1.22653 + 0.194263i 0.735891 0.677100i \(-0.236763\pi\)
0.490639 + 0.871363i \(0.336763\pi\)
\(728\) 6.08070 + 8.41084i 0.225366 + 0.311727i
\(729\) 0 0
\(730\) −10.4224 45.6760i −0.385749 1.69054i
\(731\) 4.55123 1.47878i 0.168333 0.0546948i
\(732\) 0 0
\(733\) −8.97039 + 17.6054i −0.331329 + 0.650270i −0.995231 0.0975501i \(-0.968899\pi\)
0.663902 + 0.747820i \(0.268899\pi\)
\(734\) 1.16264 21.8569i 0.0429137 0.806753i
\(735\) 0 0
\(736\) −1.50984 + 0.572801i −0.0556535 + 0.0211137i
\(737\) 6.74435 1.06820i 0.248431 0.0393476i
\(738\) 0 0
\(739\) 8.71975 6.33527i 0.320761 0.233047i −0.415739 0.909484i \(-0.636477\pi\)
0.736500 + 0.676437i \(0.236477\pi\)
\(740\) −13.3961 9.44686i −0.492452 0.347273i
\(741\) 0 0
\(742\) −24.1606 + 2.52025i −0.886962 + 0.0925213i
\(743\) 24.2468 24.2468i 0.889529 0.889529i −0.104949 0.994478i \(-0.533468\pi\)
0.994478 + 0.104949i \(0.0334678\pi\)
\(744\) 0 0
\(745\) 13.7220 + 0.503510i 0.502735 + 0.0184472i
\(746\) 19.9442 5.32729i 0.730208 0.195046i
\(747\) 0 0
\(748\) 45.7627 + 29.8207i 1.67325 + 1.09035i
\(749\) 13.5155i 0.493846i
\(750\) 0 0
\(751\) 5.70499i 0.208178i −0.994568 0.104089i \(-0.966807\pi\)
0.994568 0.104089i \(-0.0331927\pi\)
\(752\) −13.4720 20.8880i −0.491274 0.761708i
\(753\) 0 0
\(754\) 4.61360 + 17.2723i 0.168017 + 0.629020i
\(755\) −50.8566 1.86611i −1.85086 0.0679149i
\(756\) 0 0
\(757\) 21.6259 21.6259i 0.786008 0.786008i −0.194830 0.980837i \(-0.562415\pi\)
0.980837 + 0.194830i \(0.0624154\pi\)
\(758\) 2.42746 + 23.2711i 0.0881694 + 0.845243i
\(759\) 0 0
\(760\) −1.37930 + 35.3247i −0.0500323 + 1.28136i
\(761\) 31.8588 23.1468i 1.15488 0.839070i 0.165758 0.986166i \(-0.446993\pi\)
0.989122 + 0.147097i \(0.0469929\pi\)
\(762\) 0 0
\(763\) 16.6900 2.64343i 0.604218 0.0956987i
\(764\) 7.23598 + 34.3067i 0.261789 + 1.24117i
\(765\) 0 0
\(766\) −52.7142 2.80403i −1.90464 0.101314i
\(767\) −14.5308 + 28.5182i −0.524675 + 1.02973i
\(768\) 0 0
\(769\) −3.21091 + 1.04329i −0.115788 + 0.0376220i −0.366338 0.930482i \(-0.619389\pi\)
0.250550 + 0.968104i \(0.419389\pi\)
\(770\) −25.7227 + 5.86942i −0.926984 + 0.211519i
\(771\) 0 0
\(772\) −45.3586 + 2.30592i −1.63249 + 0.0829917i
\(773\) −33.4809 5.30286i −1.20422 0.190730i −0.478107 0.878301i \(-0.658677\pi\)
−0.726117 + 0.687571i \(0.758677\pi\)
\(774\) 0 0
\(775\) −16.6731 + 4.09442i −0.598916 + 0.147076i
\(776\) −15.3701 + 2.39738i −0.551753 + 0.0860609i
\(777\) 0 0
\(778\) −31.9669 18.4895i −1.14607 0.662880i
\(779\) −0.387534 + 1.19271i −0.0138849 + 0.0427332i
\(780\) 0 0
\(781\) 20.7242 + 63.7825i 0.741570 + 2.28232i
\(782\) −0.402979 + 1.88859i −0.0144105 + 0.0675360i
\(783\) 0 0
\(784\) −19.3580 + 1.97332i −0.691357 + 0.0704758i
\(785\) −19.7717 21.2780i −0.705683 0.759444i
\(786\) 0 0
\(787\) 7.15446 + 45.1715i 0.255029 + 1.61019i 0.699660 + 0.714476i \(0.253335\pi\)
−0.444631 + 0.895714i \(0.646665\pi\)
\(788\) 26.6340 + 7.18127i 0.948795 + 0.255822i
\(789\) 0 0
\(790\) 5.75859 0.387905i 0.204881 0.0138010i
\(791\) −8.75757 + 12.0538i −0.311383 + 0.428582i
\(792\) 0 0
\(793\) 19.2619 + 19.2619i 0.684011 + 0.684011i
\(794\) 30.0340 + 24.3600i 1.06587 + 0.864505i
\(795\) 0 0
\(796\) −29.8468 + 33.0440i −1.05789 + 1.17121i
\(797\) 22.9762 + 45.0933i 0.813857 + 1.59729i 0.801976 + 0.597356i \(0.203782\pi\)
0.0118812 + 0.999929i \(0.496218\pi\)
\(798\) 0 0
\(799\) −29.7236 −1.05155
\(800\) −12.2091 25.5135i −0.431657 0.902038i
\(801\) 0 0
\(802\) 22.4880 9.99123i 0.794080 0.352803i
\(803\) −38.4020 75.3681i −1.35518 2.65968i
\(804\) 0 0
\(805\) −0.520238 0.774238i −0.0183360 0.0272883i
\(806\) 9.47022 + 7.68112i 0.333574 + 0.270556i
\(807\) 0 0
\(808\) −5.65039 + 17.2521i −0.198780 + 0.606927i
\(809\) −6.34057 + 8.72704i −0.222923 + 0.306827i −0.905799 0.423707i \(-0.860729\pi\)
0.682877 + 0.730534i \(0.260729\pi\)
\(810\) 0 0
\(811\) 28.8834 + 39.7547i 1.01424 + 1.39597i 0.916168 + 0.400795i \(0.131266\pi\)
0.0980672 + 0.995180i \(0.468734\pi\)
\(812\) 14.2062 + 3.83039i 0.498539 + 0.134420i
\(813\) 0 0
\(814\) −27.6218 10.6278i −0.968143 0.372505i
\(815\) −6.37135 52.6611i −0.223179 1.84464i
\(816\) 0 0
\(817\) 4.98249 + 2.53870i 0.174315 + 0.0888180i
\(818\) 0.262763 1.23146i 0.00918729 0.0430570i
\(819\) 0 0
\(820\) −0.170936 0.988708i −0.00596935 0.0345272i
\(821\) 9.02878 27.7877i 0.315107 0.969798i −0.660604 0.750734i \(-0.729700\pi\)
0.975711 0.219064i \(-0.0703002\pi\)
\(822\) 0 0
\(823\) −4.87618 + 30.7870i −0.169973 + 1.07317i 0.744234 + 0.667919i \(0.232815\pi\)
−0.914207 + 0.405248i \(0.867185\pi\)
\(824\) 3.52725 0.550171i 0.122878 0.0191661i
\(825\) 0 0
\(826\) 14.3294 + 22.1032i 0.498583 + 0.769068i
\(827\) −28.8702 4.57260i −1.00392 0.159005i −0.367232 0.930129i \(-0.619695\pi\)
−0.636684 + 0.771125i \(0.719695\pi\)
\(828\) 0 0
\(829\) −16.3848 5.32375i −0.569069 0.184902i 0.0103290 0.999947i \(-0.496712\pi\)
−0.579398 + 0.815045i \(0.696712\pi\)
\(830\) −0.864575 + 9.59973i −0.0300098 + 0.333211i
\(831\) 0 0
\(832\) −9.20394 + 17.8559i −0.319089 + 0.619040i
\(833\) −10.5640 + 20.7330i −0.366021 + 0.718356i
\(834\) 0 0
\(835\) 19.8126 + 11.0282i 0.685642 + 0.381646i
\(836\) 13.1726 + 62.4532i 0.455585 + 2.15999i
\(837\) 0 0
\(838\) −5.51819 6.13823i −0.190623 0.212042i
\(839\) 7.13248 5.18205i 0.246241 0.178904i −0.457818 0.889046i \(-0.651369\pi\)
0.704059 + 0.710141i \(0.251369\pi\)
\(840\) 0 0
\(841\) −2.95711 2.14847i −0.101969 0.0740851i
\(842\) 0.623186 + 5.97421i 0.0214764 + 0.205885i
\(843\) 0 0
\(844\) −5.94035 0.633764i −0.204475 0.0218151i
\(845\) 4.10070 + 14.3970i 0.141068 + 0.495272i
\(846\) 0 0
\(847\) −28.1217 + 14.3287i −0.966272 + 0.492340i
\(848\) −25.4840 39.5123i −0.875123 1.35686i
\(849\) 0 0
\(850\) −33.5534 4.26721i −1.15087 0.146364i
\(851\) 1.04634i 0.0358682i
\(852\) 0 0
\(853\) 40.4602 20.6155i 1.38533 0.705861i 0.407100 0.913384i \(-0.366540\pi\)
0.978230 + 0.207523i \(0.0665401\pi\)
\(854\) 21.6596 5.78550i 0.741177 0.197976i
\(855\) 0 0
\(856\) 23.3364 11.8215i 0.797623 0.404052i
\(857\) 10.3992 10.3992i 0.355231 0.355231i −0.506821 0.862052i \(-0.669179\pi\)
0.862052 + 0.506821i \(0.169179\pi\)
\(858\) 0 0
\(859\) −7.29899 5.30303i −0.249038 0.180937i 0.456262 0.889845i \(-0.349188\pi\)
−0.705301 + 0.708908i \(0.749188\pi\)
\(860\) −4.47361 + 0.0631561i −0.152549 + 0.00215360i
\(861\) 0 0
\(862\) −2.48171 + 2.23103i −0.0845274 + 0.0759891i
\(863\) −29.5714 + 4.68365i −1.00662 + 0.159433i −0.637910 0.770111i \(-0.720201\pi\)
−0.368711 + 0.929544i \(0.620201\pi\)
\(864\) 0 0
\(865\) 3.76275 19.1763i 0.127937 0.652015i
\(866\) 0.130740 2.45783i 0.00444272 0.0835206i
\(867\) 0 0
\(868\) 9.37446 3.58168i 0.318190 0.121570i
\(869\) 9.91065 3.22017i 0.336196 0.109237i
\(870\) 0 0
\(871\) 2.85618 + 0.928028i 0.0967778 + 0.0314450i
\(872\) 19.1624 + 26.5055i 0.648920 + 0.897589i
\(873\) 0 0
\(874\) −1.89348 + 1.22754i −0.0640481 + 0.0415220i
\(875\) 12.7514 10.2142i 0.431076 0.345303i
\(876\) 0 0
\(877\) −2.73496 + 17.2678i −0.0923529 + 0.583093i 0.897502 + 0.441011i \(0.145380\pi\)
−0.989855 + 0.142083i \(0.954620\pi\)
\(878\) −0.914693 + 1.58143i −0.0308694 + 0.0533708i
\(879\) 0 0
\(880\) −32.6332 39.2802i −1.10006 1.32414i
\(881\) −4.92739 15.1650i −0.166008 0.510921i 0.833101 0.553121i \(-0.186563\pi\)
−0.999109 + 0.0422003i \(0.986563\pi\)
\(882\) 0 0
\(883\) −45.5469 23.2073i −1.53278 0.780989i −0.534825 0.844963i \(-0.679622\pi\)
−0.997952 + 0.0639745i \(0.979622\pi\)
\(884\) 11.9787 + 20.8230i 0.402889 + 0.700355i
\(885\) 0 0
\(886\) −18.1988 + 47.2987i −0.611400 + 1.58903i
\(887\) −0.180536 1.13986i −0.00606180 0.0382727i 0.984472 0.175541i \(-0.0561676\pi\)
−0.990534 + 0.137269i \(0.956168\pi\)
\(888\) 0 0
\(889\) −8.51092 11.7143i −0.285447 0.392884i
\(890\) −21.4261 + 34.0948i −0.718203 + 1.14286i
\(891\) 0 0
\(892\) 21.6949 + 26.8769i 0.726397 + 0.899904i
\(893\) −24.5601 24.5601i −0.821872 0.821872i
\(894\) 0 0
\(895\) 34.3127 + 12.5576i 1.14695 + 0.419756i
\(896\) 8.92828 + 13.9147i 0.298273 + 0.464859i
\(897\) 0 0
\(898\) 24.0358 + 54.0993i 0.802086 + 1.80532i
\(899\) 17.2865 0.576537
\(900\) 0 0
\(901\) −56.2259 −1.87316
\(902\) −0.735545 1.65555i −0.0244910 0.0551237i
\(903\) 0 0
\(904\) −28.4725 4.57819i −0.946980 0.152268i
\(905\) 39.5814 11.2740i 1.31573 0.374760i
\(906\) 0 0
\(907\) −36.0287 36.0287i −1.19631 1.19631i −0.975262 0.221052i \(-0.929051\pi\)
−0.221052 0.975262i \(-0.570949\pi\)
\(908\) 32.0814 25.8959i 1.06466 0.859385i
\(909\) 0 0
\(910\) −11.2518 2.83594i −0.372995 0.0940104i
\(911\) −31.1031 42.8098i −1.03049 1.41835i −0.904577 0.426310i \(-0.859813\pi\)
−0.125915 0.992041i \(-0.540187\pi\)
\(912\) 0 0
\(913\) 2.72234 + 17.1882i 0.0900963 + 0.568846i
\(914\) 1.14586 2.97809i 0.0379016 0.0985065i
\(915\) 0 0
\(916\) 23.0080 13.2357i 0.760207 0.437319i
\(917\) 0.113179 + 0.0576678i 0.00373751 + 0.00190436i
\(918\) 0 0
\(919\) 0.519184 + 1.59788i 0.0171263 + 0.0527093i 0.959254 0.282544i \(-0.0911782\pi\)
−0.942128 + 0.335253i \(0.891178\pi\)
\(920\) 0.881798 1.57546i 0.0290720 0.0519415i
\(921\) 0 0
\(922\) −7.02360 + 12.1433i −0.231310 + 0.399917i
\(923\) −4.61409 + 29.1322i −0.151875 + 0.958899i
\(924\) 0 0
\(925\) 18.2627 1.53263i 0.600474 0.0503926i
\(926\) −9.24903 + 5.99610i −0.303942 + 0.197044i
\(927\) 0 0
\(928\) 5.81193 + 27.8793i 0.190786 + 0.915183i
\(929\) 47.0109 + 15.2748i 1.54238 + 0.501149i 0.952031 0.306001i \(-0.0989911\pi\)
0.590347 + 0.807150i \(0.298991\pi\)
\(930\) 0 0
\(931\) −25.8601 + 8.40246i −0.847531 + 0.275380i
\(932\) 1.42945 + 3.74134i 0.0468231 + 0.122552i
\(933\) 0 0
\(934\) −0.0475062 + 0.893091i −0.00155445 + 0.0292228i
\(935\) −60.6265 + 7.33506i −1.98270 + 0.239882i
\(936\) 0 0
\(937\) 6.48322 1.02684i 0.211798 0.0335455i −0.0496339 0.998767i \(-0.515805\pi\)
0.261432 + 0.965222i \(0.415805\pi\)
\(938\) 1.83806 1.65239i 0.0600147 0.0539525i
\(939\) 0 0
\(940\) 26.5480 + 8.21349i 0.865899 + 0.267895i
\(941\) −21.2753 15.4574i −0.693556 0.503898i 0.184271 0.982875i \(-0.441008\pi\)
−0.877827 + 0.478978i \(0.841008\pi\)
\(942\) 0 0
\(943\) 0.0452886 0.0452886i 0.00147480 0.00147480i
\(944\) −25.6309 + 44.0746i −0.834214 + 1.43451i
\(945\) 0 0
\(946\) −7.80428 + 2.08460i −0.253739 + 0.0677763i
\(947\) −22.1792 + 11.3009i −0.720727 + 0.367229i −0.775566 0.631267i \(-0.782535\pi\)
0.0548392 + 0.998495i \(0.482535\pi\)
\(948\) 0 0
\(949\) 37.2019i 1.20763i
\(950\) −24.1987 31.2505i −0.785109 1.01390i
\(951\) 0 0
\(952\) 19.7707 + 0.0464457i 0.640772 + 0.00150531i
\(953\) 45.0654 22.9619i 1.45981 0.743810i 0.469532 0.882915i \(-0.344423\pi\)
0.990278 + 0.139105i \(0.0444226\pi\)
\(954\) 0 0
\(955\) −30.8472 24.1886i −0.998193 0.782724i
\(956\) 2.57971 24.1799i 0.0834337 0.782035i
\(957\) 0 0
\(958\) −3.98225 38.1761i −0.128661 1.23342i
\(959\) 9.16139 + 6.65614i 0.295837 + 0.214938i
\(960\) 0 0
\(961\) −15.5410 + 11.2912i −0.501322 + 0.364232i
\(962\) −8.70206 9.67985i −0.280566 0.312091i
\(963\) 0 0
\(964\) 29.1414 6.14651i 0.938582 0.197966i
\(965\) 37.1979 34.5647i 1.19744 1.11268i
\(966\) 0 0
\(967\) −12.1462 + 23.8383i −0.390597 + 0.766589i −0.999648 0.0265419i \(-0.991550\pi\)
0.609051 + 0.793131i \(0.291550\pi\)
\(968\) −49.3376 36.0232i −1.58577 1.15783i
\(969\) 0 0
\(970\) 11.4437 13.0968i 0.367435 0.420512i
\(971\) 45.6706 + 14.8393i 1.46564 + 0.476215i 0.929787 0.368097i \(-0.119991\pi\)
0.535852 + 0.844312i \(0.319991\pi\)
\(972\) 0 0
\(973\) 21.5526 + 3.41359i 0.690944 + 0.109435i
\(974\) 4.88434 + 7.53413i 0.156504 + 0.241409i
\(975\) 0 0
\(976\) 28.9344 + 32.3380i 0.926168 + 1.03512i
\(977\) 5.08562 32.1094i 0.162703 1.02727i −0.762276 0.647252i \(-0.775918\pi\)
0.924979 0.380017i \(-0.124082\pi\)
\(978\) 0 0
\(979\) −22.4669 + 69.1459i −0.718044 + 2.20991i
\(980\) 15.1645 15.5988i 0.484411 0.498284i
\(981\) 0 0
\(982\) 7.82669 36.6804i 0.249760 1.17052i
\(983\) 35.2093 + 17.9400i 1.12300 + 0.572198i 0.913999 0.405717i \(-0.132978\pi\)
0.209003 + 0.977915i \(0.432978\pi\)
\(984\) 0 0
\(985\) −27.9746 + 12.9845i −0.891343 + 0.413720i
\(986\) 31.7846 + 12.2295i 1.01223 + 0.389467i
\(987\) 0 0
\(988\) −7.30788 + 27.1035i −0.232495 + 0.862278i
\(989\) −0.167865 0.231047i −0.00533780 0.00734686i
\(990\) 0 0
\(991\) 14.2278 19.5828i 0.451960 0.622069i −0.520858 0.853644i \(-0.674388\pi\)
0.972817 + 0.231575i \(0.0743877\pi\)
\(992\) 14.3838 + 13.0536i 0.456686 + 0.414451i
\(993\) 0 0
\(994\) 18.8531 + 15.2914i 0.597983 + 0.485013i
\(995\) 1.82552 49.7502i 0.0578728 1.57719i
\(996\) 0 0
\(997\) 3.86738 + 7.59016i 0.122481 + 0.240383i 0.944103 0.329650i \(-0.106931\pi\)
−0.821622 + 0.570032i \(0.806931\pi\)
\(998\) −2.81466 + 1.25053i −0.0890965 + 0.0395847i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.bj.e.523.4 yes 224
3.2 odd 2 inner 900.2.bj.e.523.25 yes 224
4.3 odd 2 inner 900.2.bj.e.523.22 yes 224
12.11 even 2 inner 900.2.bj.e.523.7 yes 224
25.12 odd 20 inner 900.2.bj.e.487.22 yes 224
75.62 even 20 inner 900.2.bj.e.487.7 yes 224
100.87 even 20 inner 900.2.bj.e.487.4 224
300.287 odd 20 inner 900.2.bj.e.487.25 yes 224
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
900.2.bj.e.487.4 224 100.87 even 20 inner
900.2.bj.e.487.7 yes 224 75.62 even 20 inner
900.2.bj.e.487.22 yes 224 25.12 odd 20 inner
900.2.bj.e.487.25 yes 224 300.287 odd 20 inner
900.2.bj.e.523.4 yes 224 1.1 even 1 trivial
900.2.bj.e.523.7 yes 224 12.11 even 2 inner
900.2.bj.e.523.22 yes 224 4.3 odd 2 inner
900.2.bj.e.523.25 yes 224 3.2 odd 2 inner