Properties

Label 900.2.bj.e.487.25
Level $900$
Weight $2$
Character 900.487
Analytic conductor $7.187$
Analytic rank $0$
Dimension $224$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,2,Mod(127,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.bj (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(224\)
Relative dimension: \(28\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 487.25
Character \(\chi\) \(=\) 900.487
Dual form 900.2.bj.e.523.25

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.29240 + 0.574201i) q^{2} +(1.34059 + 1.48419i) q^{4} +(0.0819943 + 2.23456i) q^{5} +(1.03330 - 1.03330i) q^{7} +(0.880349 + 2.68793i) q^{8} +(-1.17712 + 2.93503i) q^{10} +(3.35595 - 4.61907i) q^{11} +(-0.392815 + 2.48014i) q^{13} +(1.92876 - 0.742115i) q^{14} +(-0.405651 + 3.97938i) q^{16} +(4.26203 - 2.17162i) q^{17} +(-1.72727 + 5.31601i) q^{19} +(-3.20660 + 3.11732i) q^{20} +(6.98950 - 4.04269i) q^{22} +(0.0446569 + 0.281952i) q^{23} +(-4.98655 + 0.366443i) q^{25} +(-1.93177 + 2.97977i) q^{26} +(2.91885 + 0.148387i) q^{28} +(-4.78796 + 1.55570i) q^{29} +(3.26564 + 1.06107i) q^{31} +(-2.80922 + 4.91002i) q^{32} +(6.75519 - 0.359329i) q^{34} +(2.39370 + 2.22425i) q^{35} +(-3.62025 - 0.573391i) q^{37} +(-5.28478 + 5.87859i) q^{38} +(-5.93418 + 2.18759i) q^{40} +(0.181512 - 0.131876i) q^{41} +(-0.707410 - 0.707410i) q^{43} +(11.3545 - 1.21139i) q^{44} +(-0.104183 + 0.390037i) q^{46} +(-5.53664 - 2.82106i) q^{47} +4.86458i q^{49} +(-6.65503 - 2.38969i) q^{50} +(-4.20760 + 2.74183i) q^{52} +(-10.4732 - 5.33638i) q^{53} +(10.5968 + 7.12035i) q^{55} +(3.68711 + 1.86778i) q^{56} +(-7.08124 - 0.738663i) q^{58} +(10.3120 - 7.49212i) q^{59} +(-8.77641 - 6.37643i) q^{61} +(3.61124 + 3.24646i) q^{62} +(-6.44997 + 4.73264i) q^{64} +(-5.57423 - 0.674413i) q^{65} +(-0.542962 - 1.06562i) q^{67} +(8.93672 + 3.41444i) q^{68} +(1.81645 + 4.24909i) q^{70} +(11.1713 - 3.62978i) q^{71} +(14.6329 - 2.31762i) q^{73} +(-4.34956 - 2.81980i) q^{74} +(-10.2055 + 4.56296i) q^{76} +(-1.30518 - 8.24060i) q^{77} +(-0.564003 - 1.73582i) q^{79} +(-8.92544 - 0.580168i) q^{80} +(0.310310 - 0.0662124i) q^{82} +(2.71578 - 1.38376i) q^{83} +(5.20208 + 9.34573i) q^{85} +(-0.508061 - 1.32045i) q^{86} +(15.3702 + 4.95418i) q^{88} +(7.48483 - 10.3020i) q^{89} +(2.15683 + 2.96862i) q^{91} +(-0.358605 + 0.444261i) q^{92} +(-5.53570 - 6.82508i) q^{94} +(-12.0206 - 3.42382i) q^{95} +(2.49688 - 4.90040i) q^{97} +(-2.79324 + 6.28697i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 224 q - 4 q^{10} + 16 q^{13} - 16 q^{16} + 28 q^{22} - 32 q^{25} + 28 q^{28} - 100 q^{34} - 104 q^{37} + 60 q^{40} + 156 q^{52} + 144 q^{58} - 48 q^{61} + 60 q^{64} + 28 q^{70} + 40 q^{73} + 64 q^{82} + 136 q^{85}+ \cdots - 160 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{9}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.29240 + 0.574201i 0.913864 + 0.406021i
\(3\) 0 0
\(4\) 1.34059 + 1.48419i 0.670294 + 0.742096i
\(5\) 0.0819943 + 2.23456i 0.0366690 + 0.999327i
\(6\) 0 0
\(7\) 1.03330 1.03330i 0.390551 0.390551i −0.484333 0.874884i \(-0.660938\pi\)
0.874884 + 0.484333i \(0.160938\pi\)
\(8\) 0.880349 + 2.68793i 0.311250 + 0.950328i
\(9\) 0 0
\(10\) −1.17712 + 2.93503i −0.372238 + 0.928137i
\(11\) 3.35595 4.61907i 1.01186 1.39270i 0.0940992 0.995563i \(-0.470003\pi\)
0.917758 0.397140i \(-0.129997\pi\)
\(12\) 0 0
\(13\) −0.392815 + 2.48014i −0.108947 + 0.687866i 0.871398 + 0.490577i \(0.163214\pi\)
−0.980345 + 0.197289i \(0.936786\pi\)
\(14\) 1.92876 0.742115i 0.515482 0.198338i
\(15\) 0 0
\(16\) −0.405651 + 3.97938i −0.101413 + 0.994844i
\(17\) 4.26203 2.17162i 1.03370 0.526694i 0.147043 0.989130i \(-0.453025\pi\)
0.886653 + 0.462436i \(0.153025\pi\)
\(18\) 0 0
\(19\) −1.72727 + 5.31601i −0.396264 + 1.21958i 0.531709 + 0.846927i \(0.321550\pi\)
−0.927973 + 0.372648i \(0.878450\pi\)
\(20\) −3.20660 + 3.11732i −0.717018 + 0.697055i
\(21\) 0 0
\(22\) 6.98950 4.04269i 1.49017 0.861905i
\(23\) 0.0446569 + 0.281952i 0.00931160 + 0.0587911i 0.991907 0.126970i \(-0.0405251\pi\)
−0.982595 + 0.185761i \(0.940525\pi\)
\(24\) 0 0
\(25\) −4.98655 + 0.366443i −0.997311 + 0.0732886i
\(26\) −1.93177 + 2.97977i −0.378851 + 0.584381i
\(27\) 0 0
\(28\) 2.91885 + 0.148387i 0.551610 + 0.0280425i
\(29\) −4.78796 + 1.55570i −0.889102 + 0.288887i −0.717732 0.696320i \(-0.754820\pi\)
−0.171371 + 0.985207i \(0.554820\pi\)
\(30\) 0 0
\(31\) 3.26564 + 1.06107i 0.586527 + 0.190574i 0.587222 0.809426i \(-0.300221\pi\)
−0.000695631 1.00000i \(0.500221\pi\)
\(32\) −2.80922 + 4.91002i −0.496605 + 0.867976i
\(33\) 0 0
\(34\) 6.75519 0.359329i 1.15851 0.0616244i
\(35\) 2.39370 + 2.22425i 0.404610 + 0.375967i
\(36\) 0 0
\(37\) −3.62025 0.573391i −0.595166 0.0942650i −0.148418 0.988925i \(-0.547418\pi\)
−0.446748 + 0.894660i \(0.647418\pi\)
\(38\) −5.28478 + 5.87859i −0.857305 + 0.953634i
\(39\) 0 0
\(40\) −5.93418 + 2.18759i −0.938276 + 0.345889i
\(41\) 0.181512 0.131876i 0.0283475 0.0205956i −0.573521 0.819191i \(-0.694423\pi\)
0.601869 + 0.798595i \(0.294423\pi\)
\(42\) 0 0
\(43\) −0.707410 0.707410i −0.107879 0.107879i 0.651107 0.758986i \(-0.274305\pi\)
−0.758986 + 0.651107i \(0.774305\pi\)
\(44\) 11.3545 1.21139i 1.71176 0.182624i
\(45\) 0 0
\(46\) −0.104183 + 0.390037i −0.0153609 + 0.0575078i
\(47\) −5.53664 2.82106i −0.807603 0.411494i 0.000890557 1.00000i \(-0.499717\pi\)
−0.808493 + 0.588505i \(0.799717\pi\)
\(48\) 0 0
\(49\) 4.86458i 0.694940i
\(50\) −6.65503 2.38969i −0.941163 0.337953i
\(51\) 0 0
\(52\) −4.20760 + 2.74183i −0.583489 + 0.380223i
\(53\) −10.4732 5.33638i −1.43861 0.733009i −0.451384 0.892330i \(-0.649069\pi\)
−0.987227 + 0.159321i \(0.949069\pi\)
\(54\) 0 0
\(55\) 10.5968 + 7.12035i 1.42887 + 0.960108i
\(56\) 3.68711 + 1.86778i 0.492711 + 0.249592i
\(57\) 0 0
\(58\) −7.08124 0.738663i −0.929813 0.0969912i
\(59\) 10.3120 7.49212i 1.34251 0.975390i 0.343162 0.939276i \(-0.388502\pi\)
0.999348 0.0361143i \(-0.0114980\pi\)
\(60\) 0 0
\(61\) −8.77641 6.37643i −1.12370 0.816419i −0.138937 0.990301i \(-0.544369\pi\)
−0.984766 + 0.173883i \(0.944369\pi\)
\(62\) 3.61124 + 3.24646i 0.458628 + 0.412301i
\(63\) 0 0
\(64\) −6.44997 + 4.73264i −0.806246 + 0.591580i
\(65\) −5.57423 0.674413i −0.691398 0.0836507i
\(66\) 0 0
\(67\) −0.542962 1.06562i −0.0663334 0.130187i 0.855459 0.517871i \(-0.173275\pi\)
−0.921792 + 0.387684i \(0.873275\pi\)
\(68\) 8.93672 + 3.41444i 1.08374 + 0.414061i
\(69\) 0 0
\(70\) 1.81645 + 4.24909i 0.217107 + 0.507863i
\(71\) 11.1713 3.62978i 1.32579 0.430776i 0.441312 0.897354i \(-0.354513\pi\)
0.884480 + 0.466578i \(0.154513\pi\)
\(72\) 0 0
\(73\) 14.6329 2.31762i 1.71265 0.271257i 0.778371 0.627805i \(-0.216046\pi\)
0.934277 + 0.356548i \(0.116046\pi\)
\(74\) −4.34956 2.81980i −0.505627 0.327795i
\(75\) 0 0
\(76\) −10.2055 + 4.56296i −1.17066 + 0.523408i
\(77\) −1.30518 8.24060i −0.148739 0.939103i
\(78\) 0 0
\(79\) −0.564003 1.73582i −0.0634553 0.195295i 0.914303 0.405032i \(-0.132739\pi\)
−0.977758 + 0.209736i \(0.932739\pi\)
\(80\) −8.92544 0.580168i −0.997894 0.0648647i
\(81\) 0 0
\(82\) 0.310310 0.0662124i 0.0342680 0.00731194i
\(83\) 2.71578 1.38376i 0.298095 0.151887i −0.298546 0.954395i \(-0.596502\pi\)
0.596641 + 0.802508i \(0.296502\pi\)
\(84\) 0 0
\(85\) 5.20208 + 9.34573i 0.564244 + 1.01369i
\(86\) −0.508061 1.32045i −0.0547856 0.142388i
\(87\) 0 0
\(88\) 15.3702 + 4.95418i 1.63846 + 0.528117i
\(89\) 7.48483 10.3020i 0.793390 1.09201i −0.200288 0.979737i \(-0.564188\pi\)
0.993678 0.112270i \(-0.0358123\pi\)
\(90\) 0 0
\(91\) 2.15683 + 2.96862i 0.226097 + 0.311196i
\(92\) −0.358605 + 0.444261i −0.0373871 + 0.0463174i
\(93\) 0 0
\(94\) −5.53570 6.82508i −0.570963 0.703953i
\(95\) −12.0206 3.42382i −1.23329 0.351277i
\(96\) 0 0
\(97\) 2.49688 4.90040i 0.253520 0.497560i −0.728811 0.684715i \(-0.759927\pi\)
0.982330 + 0.187155i \(0.0599267\pi\)
\(98\) −2.79324 + 6.28697i −0.282160 + 0.635080i
\(99\) 0 0
\(100\) −7.22878 6.90975i −0.722878 0.690975i
\(101\) −6.41836 −0.638650 −0.319325 0.947645i \(-0.603456\pi\)
−0.319325 + 0.947645i \(0.603456\pi\)
\(102\) 0 0
\(103\) −0.573005 + 1.12459i −0.0564599 + 0.110809i −0.917512 0.397708i \(-0.869806\pi\)
0.861052 + 0.508516i \(0.169806\pi\)
\(104\) −7.01225 + 1.12752i −0.687608 + 0.110563i
\(105\) 0 0
\(106\) −10.4714 12.9105i −1.01708 1.25398i
\(107\) 6.53996 6.53996i 0.632242 0.632242i −0.316388 0.948630i \(-0.602470\pi\)
0.948630 + 0.316388i \(0.102470\pi\)
\(108\) 0 0
\(109\) 6.79692 + 9.35516i 0.651027 + 0.896062i 0.999143 0.0413893i \(-0.0131784\pi\)
−0.348116 + 0.937452i \(0.613178\pi\)
\(110\) 9.60675 + 15.2870i 0.915968 + 1.45756i
\(111\) 0 0
\(112\) 3.69274 + 4.53106i 0.348931 + 0.428144i
\(113\) −1.59498 + 10.0703i −0.150043 + 0.947335i 0.791677 + 0.610939i \(0.209208\pi\)
−0.941721 + 0.336396i \(0.890792\pi\)
\(114\) 0 0
\(115\) −0.626379 + 0.122907i −0.0584101 + 0.0114611i
\(116\) −8.72765 5.02070i −0.810342 0.466160i
\(117\) 0 0
\(118\) 17.6292 3.76163i 1.62290 0.346287i
\(119\) 2.16003 6.64790i 0.198010 0.609412i
\(120\) 0 0
\(121\) −6.67422 20.5411i −0.606747 1.86738i
\(122\) −7.68126 13.2803i −0.695429 1.20234i
\(123\) 0 0
\(124\) 2.80305 + 6.26930i 0.251721 + 0.563000i
\(125\) −1.22771 11.1127i −0.109810 0.993953i
\(126\) 0 0
\(127\) −9.78669 + 1.55006i −0.868428 + 0.137546i −0.574721 0.818350i \(-0.694889\pi\)
−0.293708 + 0.955895i \(0.594889\pi\)
\(128\) −11.0534 + 2.41288i −0.976993 + 0.213270i
\(129\) 0 0
\(130\) −6.81688 4.07234i −0.597880 0.357168i
\(131\) −0.0826706 0.0268613i −0.00722296 0.00234688i 0.305403 0.952223i \(-0.401209\pi\)
−0.312626 + 0.949876i \(0.601209\pi\)
\(132\) 0 0
\(133\) 3.70824 + 7.27783i 0.321545 + 0.631068i
\(134\) −0.0898420 1.68898i −0.00776116 0.145906i
\(135\) 0 0
\(136\) 9.58923 + 9.54429i 0.822270 + 0.818416i
\(137\) −7.65388 1.21226i −0.653915 0.103570i −0.179343 0.983787i \(-0.557397\pi\)
−0.474572 + 0.880217i \(0.657397\pi\)
\(138\) 0 0
\(139\) 12.0808 + 8.77720i 1.02468 + 0.744473i 0.967237 0.253876i \(-0.0817056\pi\)
0.0574418 + 0.998349i \(0.481706\pi\)
\(140\) −0.0922509 + 6.53452i −0.00779663 + 0.552268i
\(141\) 0 0
\(142\) 16.5220 + 1.72345i 1.38650 + 0.144629i
\(143\) 10.1377 + 10.1377i 0.847753 + 0.847753i
\(144\) 0 0
\(145\) −3.86891 10.5715i −0.321295 0.877911i
\(146\) 20.2423 + 5.40692i 1.67526 + 0.447480i
\(147\) 0 0
\(148\) −4.00224 6.14183i −0.328982 0.504855i
\(149\) 6.14079i 0.503073i −0.967848 0.251537i \(-0.919064\pi\)
0.967848 0.251537i \(-0.0809359\pi\)
\(150\) 0 0
\(151\) 22.7591i 1.85211i −0.377392 0.926053i \(-0.623179\pi\)
0.377392 0.926053i \(-0.376821\pi\)
\(152\) −15.8097 + 0.0371404i −1.28233 + 0.00301248i
\(153\) 0 0
\(154\) 3.04494 11.3996i 0.245368 0.918604i
\(155\) −2.10327 + 7.38429i −0.168939 + 0.593120i
\(156\) 0 0
\(157\) −9.18517 9.18517i −0.733057 0.733057i 0.238167 0.971224i \(-0.423453\pi\)
−0.971224 + 0.238167i \(0.923453\pi\)
\(158\) 0.267794 2.56722i 0.0213045 0.204237i
\(159\) 0 0
\(160\) −11.2021 5.87480i −0.885603 0.464444i
\(161\) 0.337486 + 0.245198i 0.0265976 + 0.0193243i
\(162\) 0 0
\(163\) −23.4305 3.71102i −1.83521 0.290669i −0.859732 0.510745i \(-0.829369\pi\)
−0.975483 + 0.220076i \(0.929369\pi\)
\(164\) 0.439063 + 0.0926073i 0.0342851 + 0.00723141i
\(165\) 0 0
\(166\) 4.30442 0.228965i 0.334088 0.0177711i
\(167\) −4.60373 9.03534i −0.356248 0.699175i 0.641438 0.767175i \(-0.278338\pi\)
−0.997685 + 0.0679997i \(0.978338\pi\)
\(168\) 0 0
\(169\) 6.36696 + 2.06875i 0.489766 + 0.159135i
\(170\) 1.35683 + 15.0654i 0.104064 + 1.15547i
\(171\) 0 0
\(172\) 0.101587 1.99828i 0.00774596 0.152367i
\(173\) 8.63186 1.36715i 0.656268 0.103943i 0.180585 0.983559i \(-0.442201\pi\)
0.475683 + 0.879617i \(0.342201\pi\)
\(174\) 0 0
\(175\) −4.77397 + 5.53126i −0.360878 + 0.418124i
\(176\) 17.0197 + 15.2283i 1.28291 + 1.14788i
\(177\) 0 0
\(178\) 15.5888 9.01647i 1.16843 0.675813i
\(179\) −5.04948 15.5407i −0.377416 1.16157i −0.941834 0.336078i \(-0.890899\pi\)
0.564418 0.825489i \(-0.309101\pi\)
\(180\) 0 0
\(181\) −5.68758 + 17.5046i −0.422755 + 1.30110i 0.482374 + 0.875966i \(0.339775\pi\)
−0.905128 + 0.425139i \(0.860225\pi\)
\(182\) 1.08290 + 5.07510i 0.0802699 + 0.376191i
\(183\) 0 0
\(184\) −0.718555 + 0.368251i −0.0529726 + 0.0271478i
\(185\) 0.984440 8.13670i 0.0723775 0.598222i
\(186\) 0 0
\(187\) 4.27234 26.9745i 0.312424 1.97257i
\(188\) −3.23536 11.9993i −0.235963 0.875141i
\(189\) 0 0
\(190\) −13.5694 11.3272i −0.984429 0.821759i
\(191\) 10.3043 + 14.1827i 0.745595 + 1.02622i 0.998277 + 0.0586743i \(0.0186873\pi\)
−0.252682 + 0.967549i \(0.581313\pi\)
\(192\) 0 0
\(193\) −16.0574 + 16.0574i −1.15584 + 1.15584i −0.170475 + 0.985362i \(0.554530\pi\)
−0.985362 + 0.170475i \(0.945470\pi\)
\(194\) 6.04077 4.89956i 0.433702 0.351768i
\(195\) 0 0
\(196\) −7.21997 + 6.52139i −0.515712 + 0.465814i
\(197\) −6.26169 + 12.2893i −0.446127 + 0.875573i 0.552975 + 0.833198i \(0.313493\pi\)
−0.999102 + 0.0423753i \(0.986507\pi\)
\(198\) 0 0
\(199\) −22.2639 −1.57825 −0.789124 0.614233i \(-0.789465\pi\)
−0.789124 + 0.614233i \(0.789465\pi\)
\(200\) −5.37488 13.0809i −0.380062 0.924961i
\(201\) 0 0
\(202\) −8.29507 3.68542i −0.583639 0.259306i
\(203\) −3.33990 + 6.55492i −0.234415 + 0.460065i
\(204\) 0 0
\(205\) 0.309569 + 0.394788i 0.0216213 + 0.0275732i
\(206\) −1.38629 + 1.12439i −0.0965873 + 0.0783401i
\(207\) 0 0
\(208\) −9.71005 2.56923i −0.673271 0.178144i
\(209\) 18.7584 + 25.8187i 1.29754 + 1.78591i
\(210\) 0 0
\(211\) −1.75573 + 2.41656i −0.120870 + 0.166363i −0.865164 0.501489i \(-0.832786\pi\)
0.744294 + 0.667852i \(0.232786\pi\)
\(212\) −6.12008 22.6982i −0.420329 1.55892i
\(213\) 0 0
\(214\) 12.2075 4.69699i 0.834487 0.321079i
\(215\) 1.52275 1.63876i 0.103851 0.111762i
\(216\) 0 0
\(217\) 4.47080 2.27799i 0.303498 0.154640i
\(218\) 3.41259 + 15.9934i 0.231130 + 1.08321i
\(219\) 0 0
\(220\) 3.63794 + 25.2731i 0.245270 + 1.70391i
\(221\) 3.71171 + 11.4235i 0.249677 + 0.768426i
\(222\) 0 0
\(223\) −2.70165 17.0575i −0.180916 1.14226i −0.896275 0.443499i \(-0.853737\pi\)
0.715359 0.698757i \(-0.246263\pi\)
\(224\) 2.17075 + 7.97630i 0.145039 + 0.532939i
\(225\) 0 0
\(226\) −7.84373 + 12.0990i −0.521757 + 0.804815i
\(227\) −20.3606 + 3.22480i −1.35138 + 0.214037i −0.789789 0.613378i \(-0.789810\pi\)
−0.561590 + 0.827416i \(0.689810\pi\)
\(228\) 0 0
\(229\) 12.6221 4.10118i 0.834095 0.271014i 0.139326 0.990247i \(-0.455507\pi\)
0.694769 + 0.719233i \(0.255507\pi\)
\(230\) −0.880104 0.200822i −0.0580324 0.0132418i
\(231\) 0 0
\(232\) −8.39671 11.5002i −0.551271 0.755023i
\(233\) 0.909143 + 1.78429i 0.0595599 + 0.116893i 0.918867 0.394566i \(-0.129105\pi\)
−0.859308 + 0.511459i \(0.829105\pi\)
\(234\) 0 0
\(235\) 5.84987 12.6033i 0.381603 0.822149i
\(236\) 24.9439 + 5.26117i 1.62371 + 0.342473i
\(237\) 0 0
\(238\) 6.60885 7.35144i 0.428388 0.476523i
\(239\) −9.83649 7.14663i −0.636270 0.462277i 0.222297 0.974979i \(-0.428645\pi\)
−0.858567 + 0.512702i \(0.828645\pi\)
\(240\) 0 0
\(241\) 12.0473 8.75288i 0.776035 0.563823i −0.127751 0.991806i \(-0.540776\pi\)
0.903786 + 0.427984i \(0.140776\pi\)
\(242\) 3.16898 30.3797i 0.203710 1.95288i
\(243\) 0 0
\(244\) −2.30169 21.5740i −0.147351 1.38114i
\(245\) −10.8702 + 0.398868i −0.694472 + 0.0254827i
\(246\) 0 0
\(247\) −12.5059 6.37208i −0.795732 0.405446i
\(248\) 0.0228155 + 9.71194i 0.00144879 + 0.616709i
\(249\) 0 0
\(250\) 4.79425 15.0670i 0.303215 0.952922i
\(251\) 2.53046i 0.159721i 0.996806 + 0.0798606i \(0.0254475\pi\)
−0.996806 + 0.0798606i \(0.974552\pi\)
\(252\) 0 0
\(253\) 1.45222 + 0.739945i 0.0913005 + 0.0465199i
\(254\) −13.5383 3.61623i −0.849472 0.226902i
\(255\) 0 0
\(256\) −15.6709 3.22848i −0.979431 0.201780i
\(257\) 5.19094 + 5.19094i 0.323802 + 0.323802i 0.850224 0.526422i \(-0.176467\pi\)
−0.526422 + 0.850224i \(0.676467\pi\)
\(258\) 0 0
\(259\) −4.33329 + 3.14832i −0.269258 + 0.195627i
\(260\) −6.47179 9.17734i −0.401363 0.569154i
\(261\) 0 0
\(262\) −0.0914195 0.0821850i −0.00564792 0.00507740i
\(263\) 22.7729 + 3.60687i 1.40424 + 0.222409i 0.812142 0.583459i \(-0.198301\pi\)
0.592094 + 0.805869i \(0.298301\pi\)
\(264\) 0 0
\(265\) 11.0657 23.8407i 0.679763 1.46452i
\(266\) 0.613588 + 11.5351i 0.0376215 + 0.707264i
\(267\) 0 0
\(268\) 0.853702 2.23442i 0.0521481 0.136489i
\(269\) 3.53603 + 1.14893i 0.215596 + 0.0700513i 0.414823 0.909902i \(-0.363843\pi\)
−0.199228 + 0.979953i \(0.563843\pi\)
\(270\) 0 0
\(271\) 27.3547 8.88808i 1.66168 0.539912i 0.680456 0.732789i \(-0.261782\pi\)
0.981223 + 0.192877i \(0.0617817\pi\)
\(272\) 6.91278 + 17.8412i 0.419149 + 1.08178i
\(273\) 0 0
\(274\) −9.19578 5.96158i −0.555538 0.360152i
\(275\) −15.0420 + 24.2630i −0.907067 + 1.46311i
\(276\) 0 0
\(277\) 3.29668 + 20.8144i 0.198078 + 1.25062i 0.863577 + 0.504217i \(0.168219\pi\)
−0.665499 + 0.746399i \(0.731781\pi\)
\(278\) 10.5733 + 18.2804i 0.634145 + 1.09639i
\(279\) 0 0
\(280\) −3.87135 + 8.39223i −0.231357 + 0.501532i
\(281\) −5.22821 + 16.0908i −0.311889 + 0.959895i 0.665127 + 0.746730i \(0.268377\pi\)
−0.977016 + 0.213165i \(0.931623\pi\)
\(282\) 0 0
\(283\) −27.5538 + 14.0394i −1.63791 + 0.834554i −0.640103 + 0.768289i \(0.721108\pi\)
−0.997802 + 0.0662657i \(0.978892\pi\)
\(284\) 20.3634 + 11.7143i 1.20835 + 0.695118i
\(285\) 0 0
\(286\) 7.28084 + 18.9229i 0.430525 + 1.11894i
\(287\) 0.0512888 0.323825i 0.00302748 0.0191148i
\(288\) 0 0
\(289\) 3.45668 4.75771i 0.203334 0.279865i
\(290\) 1.06997 15.8841i 0.0628307 0.932744i
\(291\) 0 0
\(292\) 23.0564 + 18.6110i 1.34928 + 1.08913i
\(293\) −5.18767 + 5.18767i −0.303067 + 0.303067i −0.842213 0.539146i \(-0.818747\pi\)
0.539146 + 0.842213i \(0.318747\pi\)
\(294\) 0 0
\(295\) 17.5871 + 22.4285i 1.02396 + 1.30584i
\(296\) −1.64585 10.2358i −0.0956629 0.594942i
\(297\) 0 0
\(298\) 3.52605 7.93635i 0.204258 0.459741i
\(299\) −0.716822 −0.0414549
\(300\) 0 0
\(301\) −1.46194 −0.0842646
\(302\) 13.0683 29.4138i 0.751995 1.69257i
\(303\) 0 0
\(304\) −20.4537 9.02992i −1.17310 0.517902i
\(305\) 13.5289 20.1343i 0.774665 1.15289i
\(306\) 0 0
\(307\) 16.7528 16.7528i 0.956134 0.956134i −0.0429439 0.999077i \(-0.513674\pi\)
0.999077 + 0.0429439i \(0.0136737\pi\)
\(308\) 10.4809 12.9844i 0.597206 0.739854i
\(309\) 0 0
\(310\) −6.95832 + 8.33575i −0.395206 + 0.473439i
\(311\) 7.57416 10.4249i 0.429491 0.591144i −0.538345 0.842724i \(-0.680950\pi\)
0.967836 + 0.251581i \(0.0809504\pi\)
\(312\) 0 0
\(313\) 0.639006 4.03453i 0.0361188 0.228045i −0.963025 0.269411i \(-0.913171\pi\)
0.999144 + 0.0413661i \(0.0131710\pi\)
\(314\) −6.59677 17.1450i −0.372277 0.967550i
\(315\) 0 0
\(316\) 1.82020 3.16411i 0.102394 0.177995i
\(317\) 22.1205 11.2710i 1.24241 0.633041i 0.295749 0.955266i \(-0.404431\pi\)
0.946663 + 0.322225i \(0.104431\pi\)
\(318\) 0 0
\(319\) −8.88227 + 27.3368i −0.497312 + 1.53057i
\(320\) −11.1042 14.0248i −0.620746 0.784012i
\(321\) 0 0
\(322\) 0.295373 + 0.510677i 0.0164605 + 0.0284589i
\(323\) 4.18261 + 26.4080i 0.232727 + 1.46938i
\(324\) 0 0
\(325\) 1.04996 12.5113i 0.0582415 0.694001i
\(326\) −28.1506 18.2499i −1.55912 1.01077i
\(327\) 0 0
\(328\) 0.514269 + 0.371796i 0.0283958 + 0.0205290i
\(329\) −8.63603 + 2.80602i −0.476120 + 0.154701i
\(330\) 0 0
\(331\) 23.2371 + 7.55019i 1.27723 + 0.414996i 0.867603 0.497258i \(-0.165660\pi\)
0.409624 + 0.912254i \(0.365660\pi\)
\(332\) 5.69450 + 2.17569i 0.312526 + 0.119406i
\(333\) 0 0
\(334\) −0.761763 14.3207i −0.0416818 0.783595i
\(335\) 2.33668 1.30066i 0.127667 0.0710626i
\(336\) 0 0
\(337\) −20.2026 3.19977i −1.10050 0.174303i −0.420343 0.907365i \(-0.638090\pi\)
−0.680161 + 0.733063i \(0.738090\pi\)
\(338\) 7.04077 + 6.32957i 0.382968 + 0.344283i
\(339\) 0 0
\(340\) −6.89702 + 20.2496i −0.374043 + 1.09819i
\(341\) 15.8605 11.5233i 0.858894 0.624023i
\(342\) 0 0
\(343\) 12.2597 + 12.2597i 0.661961 + 0.661961i
\(344\) 1.27870 2.52424i 0.0689431 0.136098i
\(345\) 0 0
\(346\) 11.9408 + 3.18951i 0.641942 + 0.171469i
\(347\) −11.0443 5.62737i −0.592891 0.302093i 0.131681 0.991292i \(-0.457963\pi\)
−0.724572 + 0.689199i \(0.757963\pi\)
\(348\) 0 0
\(349\) 8.74739i 0.468237i 0.972208 + 0.234119i \(0.0752204\pi\)
−0.972208 + 0.234119i \(0.924780\pi\)
\(350\) −9.34592 + 4.40737i −0.499560 + 0.235584i
\(351\) 0 0
\(352\) 13.2521 + 29.4538i 0.706339 + 1.56989i
\(353\) 2.59436 + 1.32189i 0.138084 + 0.0703573i 0.521668 0.853149i \(-0.325310\pi\)
−0.383583 + 0.923506i \(0.625310\pi\)
\(354\) 0 0
\(355\) 9.02696 + 24.6654i 0.479101 + 1.30910i
\(356\) 25.3242 2.70178i 1.34218 0.143194i
\(357\) 0 0
\(358\) 2.39754 22.9842i 0.126714 1.21475i
\(359\) −7.90914 + 5.74633i −0.417428 + 0.303279i −0.776602 0.629991i \(-0.783058\pi\)
0.359174 + 0.933271i \(0.383058\pi\)
\(360\) 0 0
\(361\) −9.90511 7.19648i −0.521322 0.378762i
\(362\) −17.4018 + 19.3571i −0.914616 + 1.01738i
\(363\) 0 0
\(364\) −1.51459 + 7.18085i −0.0793859 + 0.376379i
\(365\) 6.37868 + 32.5081i 0.333875 + 1.70155i
\(366\) 0 0
\(367\) −7.02642 13.7901i −0.366776 0.719839i 0.631689 0.775222i \(-0.282362\pi\)
−0.998465 + 0.0553831i \(0.982362\pi\)
\(368\) −1.14011 + 0.0633322i −0.0594323 + 0.00330142i
\(369\) 0 0
\(370\) 5.94438 9.95059i 0.309034 0.517306i
\(371\) −16.3361 + 5.30792i −0.848128 + 0.275574i
\(372\) 0 0
\(373\) −14.4174 + 2.28349i −0.746503 + 0.118234i −0.518086 0.855329i \(-0.673355\pi\)
−0.228418 + 0.973563i \(0.573355\pi\)
\(374\) 21.0103 32.4086i 1.08642 1.67581i
\(375\) 0 0
\(376\) 2.70865 17.3657i 0.139688 0.895565i
\(377\) −1.97757 12.4859i −0.101850 0.643057i
\(378\) 0 0
\(379\) 5.11250 + 15.7347i 0.262612 + 0.808235i 0.992234 + 0.124385i \(0.0396958\pi\)
−0.729622 + 0.683850i \(0.760304\pi\)
\(380\) −11.0330 22.4308i −0.565982 1.15068i
\(381\) 0 0
\(382\) 5.17359 + 24.2464i 0.264704 + 1.24056i
\(383\) −33.2588 + 16.9462i −1.69945 + 0.865911i −0.713134 + 0.701028i \(0.752725\pi\)
−0.986313 + 0.164883i \(0.947275\pi\)
\(384\) 0 0
\(385\) 18.3071 3.59220i 0.933018 0.183075i
\(386\) −29.9727 + 11.5324i −1.52557 + 0.586983i
\(387\) 0 0
\(388\) 10.6204 2.86357i 0.539170 0.145376i
\(389\) −15.3486 + 21.1256i −0.778207 + 1.07111i 0.217270 + 0.976112i \(0.430285\pi\)
−0.995477 + 0.0949990i \(0.969715\pi\)
\(390\) 0 0
\(391\) 0.802621 + 1.10471i 0.0405903 + 0.0558677i
\(392\) −13.0757 + 4.28253i −0.660421 + 0.216300i
\(393\) 0 0
\(394\) −15.1491 + 12.2871i −0.763200 + 0.619018i
\(395\) 3.83256 1.40263i 0.192837 0.0705739i
\(396\) 0 0
\(397\) −12.4142 + 24.3642i −0.623050 + 1.22280i 0.336611 + 0.941644i \(0.390719\pi\)
−0.959661 + 0.281160i \(0.909281\pi\)
\(398\) −28.7739 12.7840i −1.44230 0.640802i
\(399\) 0 0
\(400\) 0.564587 19.9920i 0.0282293 0.999601i
\(401\) 17.4002 0.868927 0.434463 0.900690i \(-0.356938\pi\)
0.434463 + 0.900690i \(0.356938\pi\)
\(402\) 0 0
\(403\) −3.91440 + 7.68243i −0.194990 + 0.382689i
\(404\) −8.60437 9.52607i −0.428083 0.473940i
\(405\) 0 0
\(406\) −8.08032 + 6.55379i −0.401019 + 0.325259i
\(407\) −14.7979 + 14.7979i −0.733506 + 0.733506i
\(408\) 0 0
\(409\) −0.523349 0.720329i −0.0258780 0.0356180i 0.795882 0.605452i \(-0.207008\pi\)
−0.821760 + 0.569834i \(0.807008\pi\)
\(410\) 0.173399 + 0.687978i 0.00856359 + 0.0339768i
\(411\) 0 0
\(412\) −2.43726 + 0.657156i −0.120075 + 0.0323757i
\(413\) 2.91380 18.3970i 0.143379 0.905259i
\(414\) 0 0
\(415\) 3.31477 + 5.95512i 0.162716 + 0.292325i
\(416\) −11.0740 8.89599i −0.542948 0.436162i
\(417\) 0 0
\(418\) 9.41818 + 44.1391i 0.460658 + 2.15891i
\(419\) −1.80356 + 5.55080i −0.0881098 + 0.271174i −0.985397 0.170273i \(-0.945535\pi\)
0.897287 + 0.441448i \(0.145535\pi\)
\(420\) 0 0
\(421\) 1.31250 + 4.03945i 0.0639672 + 0.196871i 0.977932 0.208922i \(-0.0669955\pi\)
−0.913965 + 0.405793i \(0.866995\pi\)
\(422\) −3.65670 + 2.11502i −0.178005 + 0.102957i
\(423\) 0 0
\(424\) 5.12374 32.8493i 0.248831 1.59530i
\(425\) −20.4571 + 12.3907i −0.992315 + 0.601036i
\(426\) 0 0
\(427\) −15.6574 + 2.47990i −0.757717 + 0.120011i
\(428\) 18.4740 + 0.939169i 0.892972 + 0.0453964i
\(429\) 0 0
\(430\) 2.90898 1.24356i 0.140283 0.0599699i
\(431\) −2.24421 0.729187i −0.108100 0.0351237i 0.254468 0.967081i \(-0.418100\pi\)
−0.362567 + 0.931958i \(0.618100\pi\)
\(432\) 0 0
\(433\) −0.790129 1.55072i −0.0379712 0.0745226i 0.871241 0.490855i \(-0.163315\pi\)
−0.909213 + 0.416332i \(0.863315\pi\)
\(434\) 7.08607 0.376930i 0.340142 0.0180932i
\(435\) 0 0
\(436\) −4.77299 + 22.6294i −0.228585 + 1.08375i
\(437\) −1.57599 0.249613i −0.0753900 0.0119406i
\(438\) 0 0
\(439\) 1.04510 + 0.759313i 0.0498801 + 0.0362400i 0.612446 0.790512i \(-0.290186\pi\)
−0.562566 + 0.826752i \(0.690186\pi\)
\(440\) −9.81017 + 34.7518i −0.467681 + 1.65673i
\(441\) 0 0
\(442\) −1.76235 + 16.8949i −0.0838267 + 0.803610i
\(443\) −25.3395 25.3395i −1.20392 1.20392i −0.972965 0.230952i \(-0.925816\pi\)
−0.230952 0.972965i \(-0.574184\pi\)
\(444\) 0 0
\(445\) 23.6341 + 15.8806i 1.12037 + 0.752814i
\(446\) 6.30284 23.5964i 0.298448 1.11732i
\(447\) 0 0
\(448\) −1.77452 + 11.5550i −0.0838383 + 0.545923i
\(449\) 41.8596i 1.97548i −0.156115 0.987739i \(-0.549897\pi\)
0.156115 0.987739i \(-0.450103\pi\)
\(450\) 0 0
\(451\) 1.28099i 0.0603194i
\(452\) −17.0845 + 11.1329i −0.803587 + 0.523646i
\(453\) 0 0
\(454\) −28.1657 7.52333i −1.32188 0.353088i
\(455\) −6.45673 + 5.06299i −0.302696 + 0.237357i
\(456\) 0 0
\(457\) −1.59546 1.59546i −0.0746326 0.0746326i 0.668805 0.743438i \(-0.266806\pi\)
−0.743438 + 0.668805i \(0.766806\pi\)
\(458\) 18.6677 + 1.94728i 0.872286 + 0.0909904i
\(459\) 0 0
\(460\) −1.02213 0.764899i −0.0476572 0.0356636i
\(461\) −8.02498 5.83049i −0.373761 0.271553i 0.385008 0.922913i \(-0.374199\pi\)
−0.758769 + 0.651360i \(0.774199\pi\)
\(462\) 0 0
\(463\) 7.69820 + 1.21927i 0.357766 + 0.0566645i 0.332730 0.943022i \(-0.392030\pi\)
0.0250354 + 0.999687i \(0.492030\pi\)
\(464\) −4.24849 19.6842i −0.197231 0.913815i
\(465\) 0 0
\(466\) 0.150432 + 2.82805i 0.00696865 + 0.131007i
\(467\) −0.287105 0.563475i −0.0132856 0.0260745i 0.884268 0.466979i \(-0.154658\pi\)
−0.897554 + 0.440905i \(0.854658\pi\)
\(468\) 0 0
\(469\) −1.66215 0.540067i −0.0767511 0.0249380i
\(470\) 14.7972 12.9295i 0.682543 0.596393i
\(471\) 0 0
\(472\) 29.2165 + 21.1223i 1.34480 + 0.972234i
\(473\) −5.64161 + 0.893544i −0.259402 + 0.0410852i
\(474\) 0 0
\(475\) 6.66514 27.1415i 0.305817 1.24534i
\(476\) 12.7625 5.70618i 0.584967 0.261542i
\(477\) 0 0
\(478\) −8.60907 14.8844i −0.393770 0.680797i
\(479\) 8.38706 + 25.8127i 0.383214 + 1.17941i 0.937767 + 0.347264i \(0.112889\pi\)
−0.554553 + 0.832148i \(0.687111\pi\)
\(480\) 0 0
\(481\) 2.84418 8.75348i 0.129683 0.399124i
\(482\) 20.5958 4.39464i 0.938114 0.200170i
\(483\) 0 0
\(484\) 21.5396 37.4430i 0.979073 1.70195i
\(485\) 11.1550 + 5.17763i 0.506522 + 0.235104i
\(486\) 0 0
\(487\) −0.993204 + 6.27084i −0.0450064 + 0.284159i −0.999919 0.0127279i \(-0.995948\pi\)
0.954913 + 0.296887i \(0.0959485\pi\)
\(488\) 9.41313 29.2039i 0.426112 1.32200i
\(489\) 0 0
\(490\) −14.2777 5.72619i −0.645000 0.258683i
\(491\) 15.5886 + 21.4558i 0.703502 + 0.968288i 0.999913 + 0.0132269i \(0.00421038\pi\)
−0.296410 + 0.955061i \(0.595790\pi\)
\(492\) 0 0
\(493\) −17.0281 + 17.0281i −0.766906 + 0.766906i
\(494\) −12.5038 15.4162i −0.562571 0.693607i
\(495\) 0 0
\(496\) −5.54712 + 12.5648i −0.249073 + 0.564176i
\(497\) 7.79268 15.2940i 0.349549 0.686029i
\(498\) 0 0
\(499\) 2.17786 0.0974943 0.0487471 0.998811i \(-0.484477\pi\)
0.0487471 + 0.998811i \(0.484477\pi\)
\(500\) 14.8476 16.7197i 0.664003 0.747729i
\(501\) 0 0
\(502\) −1.45299 + 3.27036i −0.0648502 + 0.145963i
\(503\) −2.44023 + 4.78922i −0.108804 + 0.213541i −0.938988 0.343949i \(-0.888235\pi\)
0.830184 + 0.557490i \(0.188235\pi\)
\(504\) 0 0
\(505\) −0.526269 14.3422i −0.0234187 0.638221i
\(506\) 1.45197 + 1.79017i 0.0645482 + 0.0795828i
\(507\) 0 0
\(508\) −15.4205 12.4473i −0.684174 0.552261i
\(509\) 5.20682 + 7.16658i 0.230788 + 0.317653i 0.908668 0.417520i \(-0.137101\pi\)
−0.677879 + 0.735173i \(0.737101\pi\)
\(510\) 0 0
\(511\) 12.7254 17.5150i 0.562937 0.774816i
\(512\) −18.3992 13.1707i −0.813139 0.582069i
\(513\) 0 0
\(514\) 3.72812 + 9.68940i 0.164440 + 0.427381i
\(515\) −2.55994 1.18821i −0.112804 0.0523586i
\(516\) 0 0
\(517\) −31.6114 + 16.1068i −1.39027 + 0.708377i
\(518\) −7.40811 + 1.58071i −0.325494 + 0.0694523i
\(519\) 0 0
\(520\) −3.09449 15.5769i −0.135702 0.683091i
\(521\) 5.57418 + 17.1556i 0.244209 + 0.751599i 0.995765 + 0.0919301i \(0.0293036\pi\)
−0.751556 + 0.659669i \(0.770696\pi\)
\(522\) 0 0
\(523\) −5.95692 37.6105i −0.260478 1.64459i −0.677374 0.735639i \(-0.736882\pi\)
0.416896 0.908954i \(-0.363118\pi\)
\(524\) −0.0709598 0.158709i −0.00309989 0.00693323i
\(525\) 0 0
\(526\) 27.3606 + 17.7377i 1.19298 + 0.773402i
\(527\) 16.2225 2.56939i 0.706664 0.111925i
\(528\) 0 0
\(529\) 21.7968 7.08221i 0.947687 0.307922i
\(530\) 27.9907 24.4577i 1.21584 1.06238i
\(531\) 0 0
\(532\) −5.83048 + 15.2603i −0.252783 + 0.661618i
\(533\) 0.255771 + 0.501978i 0.0110787 + 0.0217431i
\(534\) 0 0
\(535\) 15.1502 + 14.0777i 0.655001 + 0.608633i
\(536\) 2.38633 2.39757i 0.103074 0.103559i
\(537\) 0 0
\(538\) 3.91025 + 3.51526i 0.168583 + 0.151554i
\(539\) 22.4698 + 16.3253i 0.967844 + 0.703180i
\(540\) 0 0
\(541\) −7.71293 + 5.60377i −0.331605 + 0.240925i −0.741111 0.671382i \(-0.765701\pi\)
0.409506 + 0.912307i \(0.365701\pi\)
\(542\) 40.4567 + 4.22014i 1.73776 + 0.181271i
\(543\) 0 0
\(544\) −1.31035 + 27.0272i −0.0561806 + 1.15878i
\(545\) −20.3474 + 15.9552i −0.871587 + 0.683447i
\(546\) 0 0
\(547\) 9.36904 + 4.77376i 0.400591 + 0.204111i 0.642666 0.766146i \(-0.277828\pi\)
−0.242075 + 0.970257i \(0.577828\pi\)
\(548\) −8.46147 12.9850i −0.361456 0.554690i
\(549\) 0 0
\(550\) −33.3721 + 22.7203i −1.42299 + 0.968799i
\(551\) 28.1400i 1.19880i
\(552\) 0 0
\(553\) −2.37641 1.21084i −0.101055 0.0514903i
\(554\) −7.69102 + 28.7934i −0.326760 + 1.22332i
\(555\) 0 0
\(556\) 3.16829 + 29.6968i 0.134365 + 1.25943i
\(557\) 17.1166 + 17.1166i 0.725256 + 0.725256i 0.969671 0.244415i \(-0.0785960\pi\)
−0.244415 + 0.969671i \(0.578596\pi\)
\(558\) 0 0
\(559\) 2.03236 1.47659i 0.0859595 0.0624532i
\(560\) −9.82215 + 8.62317i −0.415062 + 0.364396i
\(561\) 0 0
\(562\) −15.9963 + 17.7937i −0.674762 + 0.750580i
\(563\) 7.44499 + 1.17917i 0.313769 + 0.0496961i 0.311333 0.950301i \(-0.399225\pi\)
0.00243601 + 0.999997i \(0.499225\pi\)
\(564\) 0 0
\(565\) −22.6335 2.73838i −0.952200 0.115204i
\(566\) −43.6720 + 2.32304i −1.83567 + 0.0976448i
\(567\) 0 0
\(568\) 19.5913 + 26.8323i 0.822031 + 1.12586i
\(569\) 14.1155 + 4.58639i 0.591751 + 0.192271i 0.589558 0.807726i \(-0.299302\pi\)
0.00219278 + 0.999998i \(0.499302\pi\)
\(570\) 0 0
\(571\) 8.54065 2.77502i 0.357415 0.116131i −0.124805 0.992181i \(-0.539831\pi\)
0.482220 + 0.876050i \(0.339831\pi\)
\(572\) −1.45581 + 28.6366i −0.0608707 + 1.19736i
\(573\) 0 0
\(574\) 0.252226 0.389061i 0.0105277 0.0162391i
\(575\) −0.326003 1.38961i −0.0135953 0.0579506i
\(576\) 0 0
\(577\) −0.765580 4.83368i −0.0318715 0.201229i 0.966615 0.256235i \(-0.0824821\pi\)
−0.998486 + 0.0550063i \(0.982482\pi\)
\(578\) 7.19928 4.16403i 0.299451 0.173201i
\(579\) 0 0
\(580\) 10.5035 19.9142i 0.436132 0.826890i
\(581\) 1.37638 4.23605i 0.0571017 0.175741i
\(582\) 0 0
\(583\) −59.7968 + 30.4680i −2.47653 + 1.26186i
\(584\) 19.1116 + 37.2919i 0.790845 + 1.54315i
\(585\) 0 0
\(586\) −9.68331 + 3.72578i −0.400014 + 0.153910i
\(587\) −0.200727 + 1.26734i −0.00828489 + 0.0523087i −0.991484 0.130225i \(-0.958430\pi\)
0.983200 + 0.182534i \(0.0584300\pi\)
\(588\) 0 0
\(589\) −11.2813 + 15.5274i −0.464839 + 0.639796i
\(590\) 9.85111 + 39.0852i 0.405564 + 1.60911i
\(591\) 0 0
\(592\) 3.75030 14.1737i 0.154136 0.582537i
\(593\) −20.9667 + 20.9667i −0.860997 + 0.860997i −0.991454 0.130457i \(-0.958356\pi\)
0.130457 + 0.991454i \(0.458356\pi\)
\(594\) 0 0
\(595\) 15.0323 + 4.28164i 0.616263 + 0.175530i
\(596\) 9.11412 8.23227i 0.373329 0.337207i
\(597\) 0 0
\(598\) −0.926419 0.411600i −0.0378841 0.0168316i
\(599\) −13.6348 −0.557103 −0.278552 0.960421i \(-0.589854\pi\)
−0.278552 + 0.960421i \(0.589854\pi\)
\(600\) 0 0
\(601\) −0.304225 −0.0124096 −0.00620481 0.999981i \(-0.501975\pi\)
−0.00620481 + 0.999981i \(0.501975\pi\)
\(602\) −1.88940 0.839444i −0.0770063 0.0342132i
\(603\) 0 0
\(604\) 33.7788 30.5105i 1.37444 1.24146i
\(605\) 45.3532 16.5982i 1.84387 0.674814i
\(606\) 0 0
\(607\) 0.683237 0.683237i 0.0277317 0.0277317i −0.693105 0.720837i \(-0.743758\pi\)
0.720837 + 0.693105i \(0.243758\pi\)
\(608\) −21.2494 23.4148i −0.861776 0.949595i
\(609\) 0 0
\(610\) 29.0459 18.2532i 1.17603 0.739050i
\(611\) 9.17149 12.6235i 0.371039 0.510691i
\(612\) 0 0
\(613\) −7.43217 + 46.9249i −0.300183 + 1.89528i 0.128311 + 0.991734i \(0.459044\pi\)
−0.428494 + 0.903545i \(0.640956\pi\)
\(614\) 31.2708 12.0318i 1.26199 0.485565i
\(615\) 0 0
\(616\) 21.0012 10.7628i 0.846161 0.433648i
\(617\) −19.5932 + 9.98325i −0.788794 + 0.401910i −0.801489 0.598009i \(-0.795959\pi\)
0.0126958 + 0.999919i \(0.495959\pi\)
\(618\) 0 0
\(619\) −11.5853 + 35.6558i −0.465651 + 1.43313i 0.392511 + 0.919747i \(0.371606\pi\)
−0.858162 + 0.513379i \(0.828394\pi\)
\(620\) −13.7793 + 6.77763i −0.553391 + 0.272196i
\(621\) 0 0
\(622\) 15.7748 9.12408i 0.632513 0.365842i
\(623\) −2.91097 18.3791i −0.116625 0.736344i
\(624\) 0 0
\(625\) 24.7314 3.65458i 0.989258 0.146183i
\(626\) 3.14248 4.84730i 0.125599 0.193737i
\(627\) 0 0
\(628\) 1.31903 25.9461i 0.0526352 1.03536i
\(629\) −16.6748 + 5.41798i −0.664869 + 0.216029i
\(630\) 0 0
\(631\) −16.9430 5.50512i −0.674491 0.219155i −0.0483091 0.998832i \(-0.515383\pi\)
−0.626182 + 0.779677i \(0.715383\pi\)
\(632\) 4.16926 3.04413i 0.165844 0.121089i
\(633\) 0 0
\(634\) 35.0603 1.86496i 1.39242 0.0740672i
\(635\) −4.26616 21.7419i −0.169297 0.862801i
\(636\) 0 0
\(637\) −12.0648 1.91088i −0.478025 0.0757118i
\(638\) −27.1762 + 30.2298i −1.07592 + 1.19681i
\(639\) 0 0
\(640\) −6.29805 24.5017i −0.248952 0.968516i
\(641\) −0.146686 + 0.106574i −0.00579376 + 0.00420941i −0.590678 0.806907i \(-0.701140\pi\)
0.584885 + 0.811117i \(0.301140\pi\)
\(642\) 0 0
\(643\) 10.2095 + 10.2095i 0.402622 + 0.402622i 0.879156 0.476534i \(-0.158107\pi\)
−0.476534 + 0.879156i \(0.658107\pi\)
\(644\) 0.0885085 + 0.829602i 0.00348773 + 0.0326909i
\(645\) 0 0
\(646\) −9.75787 + 36.5313i −0.383918 + 1.43730i
\(647\) 28.0796 + 14.3073i 1.10392 + 0.562477i 0.908350 0.418211i \(-0.137343\pi\)
0.195574 + 0.980689i \(0.437343\pi\)
\(648\) 0 0
\(649\) 72.7751i 2.85667i
\(650\) 8.54095 15.5667i 0.335004 0.610575i
\(651\) 0 0
\(652\) −25.9027 39.7502i −1.01443 1.55674i
\(653\) 8.96664 + 4.56873i 0.350892 + 0.178788i 0.620548 0.784168i \(-0.286910\pi\)
−0.269657 + 0.962957i \(0.586910\pi\)
\(654\) 0 0
\(655\) 0.0532448 0.186935i 0.00208045 0.00730416i
\(656\) 0.451155 + 0.775802i 0.0176147 + 0.0302900i
\(657\) 0 0
\(658\) −12.7724 1.33232i −0.497920 0.0519393i
\(659\) 4.60974 3.34918i 0.179570 0.130465i −0.494369 0.869252i \(-0.664601\pi\)
0.673939 + 0.738787i \(0.264601\pi\)
\(660\) 0 0
\(661\) 29.9339 + 21.7482i 1.16429 + 0.845909i 0.990315 0.138841i \(-0.0443375\pi\)
0.173979 + 0.984749i \(0.444338\pi\)
\(662\) 25.6963 + 23.1006i 0.998714 + 0.897831i
\(663\) 0 0
\(664\) 6.11028 + 6.08164i 0.237125 + 0.236013i
\(665\) −15.9587 + 8.88304i −0.618853 + 0.344469i
\(666\) 0 0
\(667\) −0.652450 1.28050i −0.0252629 0.0495813i
\(668\) 7.23847 18.9455i 0.280065 0.733023i
\(669\) 0 0
\(670\) 3.76677 0.339244i 0.145523 0.0131062i
\(671\) −58.9064 + 19.1398i −2.27406 + 0.738886i
\(672\) 0 0
\(673\) −4.01796 + 0.636382i −0.154881 + 0.0245307i −0.233393 0.972382i \(-0.574983\pi\)
0.0785125 + 0.996913i \(0.474983\pi\)
\(674\) −24.2725 15.7357i −0.934940 0.606117i
\(675\) 0 0
\(676\) 5.46505 + 12.2231i 0.210194 + 0.470121i
\(677\) 2.28166 + 14.4058i 0.0876914 + 0.553662i 0.991945 + 0.126667i \(0.0404278\pi\)
−0.904254 + 0.426995i \(0.859572\pi\)
\(678\) 0 0
\(679\) −2.48356 7.64361i −0.0953103 0.293335i
\(680\) −20.5411 + 22.2103i −0.787714 + 0.851728i
\(681\) 0 0
\(682\) 27.1148 5.78562i 1.03828 0.221543i
\(683\) 15.7458 8.02287i 0.602495 0.306986i −0.126008 0.992029i \(-0.540217\pi\)
0.728503 + 0.685043i \(0.240217\pi\)
\(684\) 0 0
\(685\) 2.08129 17.2025i 0.0795219 0.657273i
\(686\) 8.80488 + 22.8839i 0.336172 + 0.873712i
\(687\) 0 0
\(688\) 3.10201 2.52809i 0.118263 0.0963826i
\(689\) 17.3490 23.8789i 0.660945 0.909712i
\(690\) 0 0
\(691\) −2.97580 4.09584i −0.113205 0.155813i 0.748655 0.662960i \(-0.230700\pi\)
−0.861860 + 0.507147i \(0.830700\pi\)
\(692\) 13.6009 + 10.9785i 0.517028 + 0.417342i
\(693\) 0 0
\(694\) −11.0424 13.6145i −0.419165 0.516798i
\(695\) −18.6227 + 27.7150i −0.706398 + 1.05129i
\(696\) 0 0
\(697\) 0.487227 0.956237i 0.0184550 0.0362201i
\(698\) −5.02276 + 11.3051i −0.190114 + 0.427905i
\(699\) 0 0
\(700\) −14.6094 + 0.329653i −0.552182 + 0.0124597i
\(701\) −33.5634 −1.26767 −0.633836 0.773467i \(-0.718521\pi\)
−0.633836 + 0.773467i \(0.718521\pi\)
\(702\) 0 0
\(703\) 9.30132 18.2549i 0.350806 0.688495i
\(704\) 0.214604 + 45.6754i 0.00808820 + 1.72146i
\(705\) 0 0
\(706\) 2.59392 + 3.19810i 0.0976234 + 0.120362i
\(707\) −6.63210 + 6.63210i −0.249426 + 0.249426i
\(708\) 0 0
\(709\) 11.9891 + 16.5016i 0.450260 + 0.619730i 0.972453 0.233097i \(-0.0748861\pi\)
−0.522193 + 0.852827i \(0.674886\pi\)
\(710\) −2.49646 + 37.0608i −0.0936904 + 1.39087i
\(711\) 0 0
\(712\) 34.2803 + 11.0494i 1.28471 + 0.414093i
\(713\) −0.153338 + 0.968139i −0.00574256 + 0.0362571i
\(714\) 0 0
\(715\) −21.8220 + 23.4845i −0.816097 + 0.878270i
\(716\) 16.2961 28.3281i 0.609015 1.05867i
\(717\) 0 0
\(718\) −13.5213 + 2.88511i −0.504610 + 0.107671i
\(719\) 7.42311 22.8460i 0.276835 0.852012i −0.711893 0.702288i \(-0.752162\pi\)
0.988728 0.149723i \(-0.0478383\pi\)
\(720\) 0 0
\(721\) 0.569949 + 1.75412i 0.0212260 + 0.0653269i
\(722\) −8.66912 14.9882i −0.322631 0.557805i
\(723\) 0 0
\(724\) −33.6048 + 15.0249i −1.24891 + 0.558398i
\(725\) 23.3054 9.51212i 0.865539 0.353271i
\(726\) 0 0
\(727\) 33.0708 5.23791i 1.22653 0.194263i 0.490639 0.871363i \(-0.336763\pi\)
0.735891 + 0.677100i \(0.236763\pi\)
\(728\) −6.08070 + 8.41084i −0.225366 + 0.311727i
\(729\) 0 0
\(730\) −10.4224 + 45.6760i −0.385749 + 1.69054i
\(731\) −4.55123 1.47878i −0.168333 0.0546948i
\(732\) 0 0
\(733\) −8.97039 17.6054i −0.331329 0.650270i 0.663902 0.747820i \(-0.268899\pi\)
−0.995231 + 0.0975501i \(0.968899\pi\)
\(734\) −1.16264 21.8569i −0.0429137 0.806753i
\(735\) 0 0
\(736\) −1.50984 0.572801i −0.0556535 0.0211137i
\(737\) −6.74435 1.06820i −0.248431 0.0393476i
\(738\) 0 0
\(739\) 8.71975 + 6.33527i 0.320761 + 0.233047i 0.736500 0.676437i \(-0.236477\pi\)
−0.415739 + 0.909484i \(0.636477\pi\)
\(740\) 13.3961 9.44686i 0.492452 0.347273i
\(741\) 0 0
\(742\) −24.1606 2.52025i −0.886962 0.0925213i
\(743\) −24.2468 24.2468i −0.889529 0.889529i 0.104949 0.994478i \(-0.466532\pi\)
−0.994478 + 0.104949i \(0.966532\pi\)
\(744\) 0 0
\(745\) 13.7220 0.503510i 0.502735 0.0184472i
\(746\) −19.9442 5.32729i −0.730208 0.195046i
\(747\) 0 0
\(748\) 45.7627 29.8207i 1.67325 1.09035i
\(749\) 13.5155i 0.493846i
\(750\) 0 0
\(751\) 5.70499i 0.208178i 0.994568 + 0.104089i \(0.0331927\pi\)
−0.994568 + 0.104089i \(0.966807\pi\)
\(752\) 13.4720 20.8880i 0.491274 0.761708i
\(753\) 0 0
\(754\) 4.61360 17.2723i 0.168017 0.629020i
\(755\) 50.8566 1.86611i 1.85086 0.0679149i
\(756\) 0 0
\(757\) 21.6259 + 21.6259i 0.786008 + 0.786008i 0.980837 0.194830i \(-0.0624154\pi\)
−0.194830 + 0.980837i \(0.562415\pi\)
\(758\) −2.42746 + 23.2711i −0.0881694 + 0.845243i
\(759\) 0 0
\(760\) −1.37930 35.3247i −0.0500323 1.28136i
\(761\) −31.8588 23.1468i −1.15488 0.839070i −0.165758 0.986166i \(-0.553007\pi\)
−0.989122 + 0.147097i \(0.953007\pi\)
\(762\) 0 0
\(763\) 16.6900 + 2.64343i 0.604218 + 0.0956987i
\(764\) −7.23598 + 34.3067i −0.261789 + 1.24117i
\(765\) 0 0
\(766\) −52.7142 + 2.80403i −1.90464 + 0.101314i
\(767\) 14.5308 + 28.5182i 0.524675 + 1.02973i
\(768\) 0 0
\(769\) −3.21091 1.04329i −0.115788 0.0376220i 0.250550 0.968104i \(-0.419389\pi\)
−0.366338 + 0.930482i \(0.619389\pi\)
\(770\) 25.7227 + 5.86942i 0.926984 + 0.211519i
\(771\) 0 0
\(772\) −45.3586 2.30592i −1.63249 0.0829917i
\(773\) 33.4809 5.30286i 1.20422 0.190730i 0.478107 0.878301i \(-0.341323\pi\)
0.726117 + 0.687571i \(0.241323\pi\)
\(774\) 0 0
\(775\) −16.6731 4.09442i −0.598916 0.147076i
\(776\) 15.3701 + 2.39738i 0.551753 + 0.0860609i
\(777\) 0 0
\(778\) −31.9669 + 18.4895i −1.14607 + 0.662880i
\(779\) 0.387534 + 1.19271i 0.0138849 + 0.0427332i
\(780\) 0 0
\(781\) 20.7242 63.7825i 0.741570 2.28232i
\(782\) 0.402979 + 1.88859i 0.0144105 + 0.0675360i
\(783\) 0 0
\(784\) −19.3580 1.97332i −0.691357 0.0704758i
\(785\) 19.7717 21.2780i 0.705683 0.759444i
\(786\) 0 0
\(787\) 7.15446 45.1715i 0.255029 1.61019i −0.444631 0.895714i \(-0.646665\pi\)
0.699660 0.714476i \(-0.253335\pi\)
\(788\) −26.6340 + 7.18127i −0.948795 + 0.255822i
\(789\) 0 0
\(790\) 5.75859 + 0.387905i 0.204881 + 0.0138010i
\(791\) 8.75757 + 12.0538i 0.311383 + 0.428582i
\(792\) 0 0
\(793\) 19.2619 19.2619i 0.684011 0.684011i
\(794\) −30.0340 + 24.3600i −1.06587 + 0.864505i
\(795\) 0 0
\(796\) −29.8468 33.0440i −1.05789 1.17121i
\(797\) −22.9762 + 45.0933i −0.813857 + 1.59729i −0.0118812 + 0.999929i \(0.503782\pi\)
−0.801976 + 0.597356i \(0.796218\pi\)
\(798\) 0 0
\(799\) −29.7236 −1.05155
\(800\) 12.2091 25.5135i 0.431657 0.902038i
\(801\) 0 0
\(802\) 22.4880 + 9.99123i 0.794080 + 0.352803i
\(803\) 38.4020 75.3681i 1.35518 2.65968i
\(804\) 0 0
\(805\) −0.520238 + 0.774238i −0.0183360 + 0.0272883i
\(806\) −9.47022 + 7.68112i −0.333574 + 0.270556i
\(807\) 0 0
\(808\) −5.65039 17.2521i −0.198780 0.606927i
\(809\) 6.34057 + 8.72704i 0.222923 + 0.306827i 0.905799 0.423707i \(-0.139271\pi\)
−0.682877 + 0.730534i \(0.739271\pi\)
\(810\) 0 0
\(811\) 28.8834 39.7547i 1.01424 1.39597i 0.0980672 0.995180i \(-0.468734\pi\)
0.916168 0.400795i \(-0.131266\pi\)
\(812\) −14.2062 + 3.83039i −0.498539 + 0.134420i
\(813\) 0 0
\(814\) −27.6218 + 10.6278i −0.968143 + 0.372505i
\(815\) 6.37135 52.6611i 0.223179 1.84464i
\(816\) 0 0
\(817\) 4.98249 2.53870i 0.174315 0.0888180i
\(818\) −0.262763 1.23146i −0.00918729 0.0430570i
\(819\) 0 0
\(820\) −0.170936 + 0.988708i −0.00596935 + 0.0345272i
\(821\) −9.02878 27.7877i −0.315107 0.969798i −0.975711 0.219064i \(-0.929700\pi\)
0.660604 0.750734i \(-0.270300\pi\)
\(822\) 0 0
\(823\) −4.87618 30.7870i −0.169973 1.07317i −0.914207 0.405248i \(-0.867185\pi\)
0.744234 0.667919i \(-0.232815\pi\)
\(824\) −3.52725 0.550171i −0.122878 0.0191661i
\(825\) 0 0
\(826\) 14.3294 22.1032i 0.498583 0.769068i
\(827\) 28.8702 4.57260i 1.00392 0.159005i 0.367232 0.930129i \(-0.380305\pi\)
0.636684 + 0.771125i \(0.280305\pi\)
\(828\) 0 0
\(829\) −16.3848 + 5.32375i −0.569069 + 0.184902i −0.579398 0.815045i \(-0.696712\pi\)
0.0103290 + 0.999947i \(0.496712\pi\)
\(830\) 0.864575 + 9.59973i 0.0300098 + 0.333211i
\(831\) 0 0
\(832\) −9.20394 17.8559i −0.319089 0.619040i
\(833\) 10.5640 + 20.7330i 0.366021 + 0.718356i
\(834\) 0 0
\(835\) 19.8126 11.0282i 0.685642 0.381646i
\(836\) −13.1726 + 62.4532i −0.455585 + 2.15999i
\(837\) 0 0
\(838\) −5.51819 + 6.13823i −0.190623 + 0.212042i
\(839\) −7.13248 5.18205i −0.246241 0.178904i 0.457818 0.889046i \(-0.348631\pi\)
−0.704059 + 0.710141i \(0.748631\pi\)
\(840\) 0 0
\(841\) −2.95711 + 2.14847i −0.101969 + 0.0740851i
\(842\) −0.623186 + 5.97421i −0.0214764 + 0.205885i
\(843\) 0 0
\(844\) −5.94035 + 0.633764i −0.204475 + 0.0218151i
\(845\) −4.10070 + 14.3970i −0.141068 + 0.495272i
\(846\) 0 0
\(847\) −28.1217 14.3287i −0.966272 0.492340i
\(848\) 25.4840 39.5123i 0.875123 1.35686i
\(849\) 0 0
\(850\) −33.5534 + 4.26721i −1.15087 + 0.146364i
\(851\) 1.04634i 0.0358682i
\(852\) 0 0
\(853\) 40.4602 + 20.6155i 1.38533 + 0.705861i 0.978230 0.207523i \(-0.0665401\pi\)
0.407100 + 0.913384i \(0.366540\pi\)
\(854\) −21.6596 5.78550i −0.741177 0.197976i
\(855\) 0 0
\(856\) 23.3364 + 11.8215i 0.797623 + 0.404052i
\(857\) −10.3992 10.3992i −0.355231 0.355231i 0.506821 0.862052i \(-0.330821\pi\)
−0.862052 + 0.506821i \(0.830821\pi\)
\(858\) 0 0
\(859\) −7.29899 + 5.30303i −0.249038 + 0.180937i −0.705301 0.708908i \(-0.749188\pi\)
0.456262 + 0.889845i \(0.349188\pi\)
\(860\) 4.47361 + 0.0631561i 0.152549 + 0.00215360i
\(861\) 0 0
\(862\) −2.48171 2.23103i −0.0845274 0.0759891i
\(863\) 29.5714 + 4.68365i 1.00662 + 0.159433i 0.637910 0.770111i \(-0.279799\pi\)
0.368711 + 0.929544i \(0.379799\pi\)
\(864\) 0 0
\(865\) 3.76275 + 19.1763i 0.127937 + 0.652015i
\(866\) −0.130740 2.45783i −0.00444272 0.0835206i
\(867\) 0 0
\(868\) 9.37446 + 3.58168i 0.318190 + 0.121570i
\(869\) −9.91065 3.22017i −0.336196 0.109237i
\(870\) 0 0
\(871\) 2.85618 0.928028i 0.0967778 0.0314450i
\(872\) −19.1624 + 26.5055i −0.648920 + 0.897589i
\(873\) 0 0
\(874\) −1.89348 1.22754i −0.0640481 0.0415220i
\(875\) −12.7514 10.2142i −0.431076 0.345303i
\(876\) 0 0
\(877\) −2.73496 17.2678i −0.0923529 0.583093i −0.989855 0.142083i \(-0.954620\pi\)
0.897502 0.441011i \(-0.145380\pi\)
\(878\) 0.914693 + 1.58143i 0.0308694 + 0.0533708i
\(879\) 0 0
\(880\) −32.6332 + 39.2802i −1.10006 + 1.32414i
\(881\) 4.92739 15.1650i 0.166008 0.510921i −0.833101 0.553121i \(-0.813437\pi\)
0.999109 + 0.0422003i \(0.0134368\pi\)
\(882\) 0 0
\(883\) −45.5469 + 23.2073i −1.53278 + 0.780989i −0.997952 0.0639745i \(-0.979622\pi\)
−0.534825 + 0.844963i \(0.679622\pi\)
\(884\) −11.9787 + 20.8230i −0.402889 + 0.700355i
\(885\) 0 0
\(886\) −18.1988 47.2987i −0.611400 1.58903i
\(887\) 0.180536 1.13986i 0.00606180 0.0382727i −0.984472 0.175541i \(-0.943832\pi\)
0.990534 + 0.137269i \(0.0438324\pi\)
\(888\) 0 0
\(889\) −8.51092 + 11.7143i −0.285447 + 0.392884i
\(890\) 21.4261 + 34.0948i 0.718203 + 1.14286i
\(891\) 0 0
\(892\) 21.6949 26.8769i 0.726397 0.899904i
\(893\) 24.5601 24.5601i 0.821872 0.821872i
\(894\) 0 0
\(895\) 34.3127 12.5576i 1.14695 0.419756i
\(896\) −8.92828 + 13.9147i −0.298273 + 0.464859i
\(897\) 0 0
\(898\) 24.0358 54.0993i 0.802086 1.80532i
\(899\) −17.2865 −0.576537
\(900\) 0 0
\(901\) −56.2259 −1.87316
\(902\) 0.735545 1.65555i 0.0244910 0.0551237i
\(903\) 0 0
\(904\) −28.4725 + 4.57819i −0.946980 + 0.152268i
\(905\) −39.5814 11.2740i −1.31573 0.374760i
\(906\) 0 0
\(907\) −36.0287 + 36.0287i −1.19631 + 1.19631i −0.221052 + 0.975262i \(0.570949\pi\)
−0.975262 + 0.221052i \(0.929051\pi\)
\(908\) −32.0814 25.8959i −1.06466 0.859385i
\(909\) 0 0
\(910\) −11.2518 + 2.83594i −0.372995 + 0.0940104i
\(911\) 31.1031 42.8098i 1.03049 1.41835i 0.125915 0.992041i \(-0.459813\pi\)
0.904577 0.426310i \(-0.140187\pi\)
\(912\) 0 0
\(913\) 2.72234 17.1882i 0.0900963 0.568846i
\(914\) −1.14586 2.97809i −0.0379016 0.0985065i
\(915\) 0 0
\(916\) 23.0080 + 13.2357i 0.760207 + 0.437319i
\(917\) −0.113179 + 0.0576678i −0.00373751 + 0.00190436i
\(918\) 0 0
\(919\) 0.519184 1.59788i 0.0171263 0.0527093i −0.942128 0.335253i \(-0.891178\pi\)
0.959254 + 0.282544i \(0.0911782\pi\)
\(920\) −0.881798 1.57546i −0.0290720 0.0519415i
\(921\) 0 0
\(922\) −7.02360 12.1433i −0.231310 0.399917i
\(923\) 4.61409 + 29.1322i 0.151875 + 0.958899i
\(924\) 0 0
\(925\) 18.2627 + 1.53263i 0.600474 + 0.0503926i
\(926\) 9.24903 + 5.99610i 0.303942 + 0.197044i
\(927\) 0 0
\(928\) 5.81193 27.8793i 0.190786 0.915183i
\(929\) −47.0109 + 15.2748i −1.54238 + 0.501149i −0.952031 0.306001i \(-0.901009\pi\)
−0.590347 + 0.807150i \(0.701009\pi\)
\(930\) 0 0
\(931\) −25.8601 8.40246i −0.847531 0.275380i
\(932\) −1.42945 + 3.74134i −0.0468231 + 0.122552i
\(933\) 0 0
\(934\) −0.0475062 0.893091i −0.00155445 0.0292228i
\(935\) 60.6265 + 7.33506i 1.98270 + 0.239882i
\(936\) 0 0
\(937\) 6.48322 + 1.02684i 0.211798 + 0.0335455i 0.261432 0.965222i \(-0.415805\pi\)
−0.0496339 + 0.998767i \(0.515805\pi\)
\(938\) −1.83806 1.65239i −0.0600147 0.0539525i
\(939\) 0 0
\(940\) 26.5480 8.21349i 0.865899 0.267895i
\(941\) 21.2753 15.4574i 0.693556 0.503898i −0.184271 0.982875i \(-0.558992\pi\)
0.877827 + 0.478978i \(0.158992\pi\)
\(942\) 0 0
\(943\) 0.0452886 + 0.0452886i 0.00147480 + 0.00147480i
\(944\) 25.6309 + 44.0746i 0.834214 + 1.43451i
\(945\) 0 0
\(946\) −7.80428 2.08460i −0.253739 0.0677763i
\(947\) 22.1792 + 11.3009i 0.720727 + 0.367229i 0.775566 0.631267i \(-0.217465\pi\)
−0.0548392 + 0.998495i \(0.517465\pi\)
\(948\) 0 0
\(949\) 37.2019i 1.20763i
\(950\) 24.1987 31.2505i 0.785109 1.01390i
\(951\) 0 0
\(952\) 19.7707 0.0464457i 0.640772 0.00150531i
\(953\) −45.0654 22.9619i −1.45981 0.743810i −0.469532 0.882915i \(-0.655577\pi\)
−0.990278 + 0.139105i \(0.955577\pi\)
\(954\) 0 0
\(955\) −30.8472 + 24.1886i −0.998193 + 0.782724i
\(956\) −2.57971 24.1799i −0.0834337 0.782035i
\(957\) 0 0
\(958\) −3.98225 + 38.1761i −0.128661 + 1.23342i
\(959\) −9.16139 + 6.65614i −0.295837 + 0.214938i
\(960\) 0 0
\(961\) −15.5410 11.2912i −0.501322 0.364232i
\(962\) 8.70206 9.67985i 0.280566 0.312091i
\(963\) 0 0
\(964\) 29.1414 + 6.14651i 0.938582 + 0.197966i
\(965\) −37.1979 34.5647i −1.19744 1.11268i
\(966\) 0 0
\(967\) −12.1462 23.8383i −0.390597 0.766589i 0.609051 0.793131i \(-0.291550\pi\)
−0.999648 + 0.0265419i \(0.991550\pi\)
\(968\) 49.3376 36.0232i 1.58577 1.15783i
\(969\) 0 0
\(970\) 11.4437 + 13.0968i 0.367435 + 0.420512i
\(971\) −45.6706 + 14.8393i −1.46564 + 0.476215i −0.929787 0.368097i \(-0.880009\pi\)
−0.535852 + 0.844312i \(0.680009\pi\)
\(972\) 0 0
\(973\) 21.5526 3.41359i 0.690944 0.109435i
\(974\) −4.88434 + 7.53413i −0.156504 + 0.241409i
\(975\) 0 0
\(976\) 28.9344 32.3380i 0.926168 1.03512i
\(977\) −5.08562 32.1094i −0.162703 1.02727i −0.924979 0.380017i \(-0.875918\pi\)
0.762276 0.647252i \(-0.224082\pi\)
\(978\) 0 0
\(979\) −22.4669 69.1459i −0.718044 2.20991i
\(980\) −15.1645 15.5988i −0.484411 0.498284i
\(981\) 0 0
\(982\) 7.82669 + 36.6804i 0.249760 + 1.17052i
\(983\) −35.2093 + 17.9400i −1.12300 + 0.572198i −0.913999 0.405717i \(-0.867022\pi\)
−0.209003 + 0.977915i \(0.567022\pi\)
\(984\) 0 0
\(985\) −27.9746 12.9845i −0.891343 0.413720i
\(986\) −31.7846 + 12.2295i −1.01223 + 0.389467i
\(987\) 0 0
\(988\) −7.30788 27.1035i −0.232495 0.862278i
\(989\) 0.167865 0.231047i 0.00533780 0.00734686i
\(990\) 0 0
\(991\) 14.2278 + 19.5828i 0.451960 + 0.622069i 0.972817 0.231575i \(-0.0743877\pi\)
−0.520858 + 0.853644i \(0.674388\pi\)
\(992\) −14.3838 + 13.0536i −0.456686 + 0.414451i
\(993\) 0 0
\(994\) 18.8531 15.2914i 0.597983 0.485013i
\(995\) −1.82552 49.7502i −0.0578728 1.57719i
\(996\) 0 0
\(997\) 3.86738 7.59016i 0.122481 0.240383i −0.821622 0.570032i \(-0.806931\pi\)
0.944103 + 0.329650i \(0.106931\pi\)
\(998\) 2.81466 + 1.25053i 0.0890965 + 0.0395847i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.bj.e.487.25 yes 224
3.2 odd 2 inner 900.2.bj.e.487.4 224
4.3 odd 2 inner 900.2.bj.e.487.7 yes 224
12.11 even 2 inner 900.2.bj.e.487.22 yes 224
25.23 odd 20 inner 900.2.bj.e.523.7 yes 224
75.23 even 20 inner 900.2.bj.e.523.22 yes 224
100.23 even 20 inner 900.2.bj.e.523.25 yes 224
300.23 odd 20 inner 900.2.bj.e.523.4 yes 224
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
900.2.bj.e.487.4 224 3.2 odd 2 inner
900.2.bj.e.487.7 yes 224 4.3 odd 2 inner
900.2.bj.e.487.22 yes 224 12.11 even 2 inner
900.2.bj.e.487.25 yes 224 1.1 even 1 trivial
900.2.bj.e.523.4 yes 224 300.23 odd 20 inner
900.2.bj.e.523.7 yes 224 25.23 odd 20 inner
900.2.bj.e.523.22 yes 224 75.23 even 20 inner
900.2.bj.e.523.25 yes 224 100.23 even 20 inner