L(s) = 1 | + (−0.891 − 0.453i)2-s + (0.587 + 0.809i)4-s + (−0.987 + 0.156i)5-s + (−0.156 − 0.987i)8-s + (0.951 + 0.309i)10-s + (−0.896 − 1.76i)13-s + (−0.309 + 0.951i)16-s + (1.87 − 0.297i)17-s + (−0.707 − 0.707i)20-s + (0.951 − 0.309i)25-s + 1.97i·26-s + (1.44 − 1.04i)29-s + (0.707 − 0.707i)32-s + (−1.80 − 0.587i)34-s + (0.809 − 0.412i)37-s + ⋯ |
L(s) = 1 | + (−0.891 − 0.453i)2-s + (0.587 + 0.809i)4-s + (−0.987 + 0.156i)5-s + (−0.156 − 0.987i)8-s + (0.951 + 0.309i)10-s + (−0.896 − 1.76i)13-s + (−0.309 + 0.951i)16-s + (1.87 − 0.297i)17-s + (−0.707 − 0.707i)20-s + (0.951 − 0.309i)25-s + 1.97i·26-s + (1.44 − 1.04i)29-s + (0.707 − 0.707i)32-s + (−1.80 − 0.587i)34-s + (0.809 − 0.412i)37-s + ⋯ |
Λ(s)=(=(900s/2ΓC(s)L(s)(0.356+0.934i)Λ(1−s)
Λ(s)=(=(900s/2ΓC(s)L(s)(0.356+0.934i)Λ(1−s)
Degree: |
2 |
Conductor: |
900
= 22⋅32⋅52
|
Sign: |
0.356+0.934i
|
Analytic conductor: |
0.449158 |
Root analytic conductor: |
0.670192 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ900(467,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 900, ( :0), 0.356+0.934i)
|
Particular Values
L(21) |
≈ |
0.5370348359 |
L(21) |
≈ |
0.5370348359 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.891+0.453i)T |
| 3 | 1 |
| 5 | 1+(0.987−0.156i)T |
good | 7 | 1−iT2 |
| 11 | 1+(−0.809+0.587i)T2 |
| 13 | 1+(0.896+1.76i)T+(−0.587+0.809i)T2 |
| 17 | 1+(−1.87+0.297i)T+(0.951−0.309i)T2 |
| 19 | 1+(0.309+0.951i)T2 |
| 23 | 1+(0.587+0.809i)T2 |
| 29 | 1+(−1.44+1.04i)T+(0.309−0.951i)T2 |
| 31 | 1+(−0.309−0.951i)T2 |
| 37 | 1+(−0.809+0.412i)T+(0.587−0.809i)T2 |
| 41 | 1+(0.297+0.0966i)T+(0.809+0.587i)T2 |
| 43 | 1+iT2 |
| 47 | 1+(0.951+0.309i)T2 |
| 53 | 1+(1.16+0.183i)T+(0.951+0.309i)T2 |
| 59 | 1+(0.809+0.587i)T2 |
| 61 | 1+(0.363+1.11i)T+(−0.809+0.587i)T2 |
| 67 | 1+(0.951−0.309i)T2 |
| 71 | 1+(0.309−0.951i)T2 |
| 73 | 1+(0.278+0.142i)T+(0.587+0.809i)T2 |
| 79 | 1+(0.309−0.951i)T2 |
| 83 | 1+(0.951−0.309i)T2 |
| 89 | 1+(0.280+0.863i)T+(−0.809+0.587i)T2 |
| 97 | 1+(1.76+0.278i)T+(0.951+0.309i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.14187416871903901768840820021, −9.530535003300153030407508728559, −8.137920939482265566060771261649, −7.943759655829877788392517519113, −7.18340668232805453593223807273, −5.93040802236101095765148118835, −4.68538096177814200061650787726, −3.37061683995461990215091699819, −2.77181975301344430612239502277, −0.800737410943779763670657227828,
1.39622071123164531093632587568, 2.97849505773504656027527218061, 4.36930043618597602290040361502, 5.27320367621786531408599916330, 6.53103093691612159409917816161, 7.21039953847556823222320527991, 7.967875545285242817702062677209, 8.703030138584828463305306620173, 9.577687336697017679990293943432, 10.25533520458262273922590206509