L(s) = 1 | + (−0.866 − 0.5i)2-s + (−0.866 + 0.5i)3-s + (0.499 + 0.866i)4-s + 0.999·6-s + (0.866 + 0.5i)7-s − 0.999i·8-s + (0.499 − 0.866i)9-s + (−0.866 − 0.499i)12-s + (−0.499 − 0.866i)14-s + (−0.5 + 0.866i)16-s + (−0.866 + 0.499i)18-s − 0.999·21-s + (0.866 − 0.5i)23-s + (0.499 + 0.866i)24-s + 0.999i·27-s + 0.999i·28-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.5i)2-s + (−0.866 + 0.5i)3-s + (0.499 + 0.866i)4-s + 0.999·6-s + (0.866 + 0.5i)7-s − 0.999i·8-s + (0.499 − 0.866i)9-s + (−0.866 − 0.499i)12-s + (−0.499 − 0.866i)14-s + (−0.5 + 0.866i)16-s + (−0.866 + 0.499i)18-s − 0.999·21-s + (0.866 − 0.5i)23-s + (0.499 + 0.866i)24-s + 0.999i·27-s + 0.999i·28-s + ⋯ |
Λ(s)=(=(900s/2ΓC(s)L(s)(0.939−0.342i)Λ(1−s)
Λ(s)=(=(900s/2ΓC(s)L(s)(0.939−0.342i)Λ(1−s)
Degree: |
2 |
Conductor: |
900
= 22⋅32⋅52
|
Sign: |
0.939−0.342i
|
Analytic conductor: |
0.449158 |
Root analytic conductor: |
0.670192 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ900(151,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 900, ( :0), 0.939−0.342i)
|
Particular Values
L(21) |
≈ |
0.5677749731 |
L(21) |
≈ |
0.5677749731 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866+0.5i)T |
| 3 | 1+(0.866−0.5i)T |
| 5 | 1 |
good | 7 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 13 | 1+(−0.5+0.866i)T2 |
| 17 | 1+T2 |
| 19 | 1−T2 |
| 23 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 29 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1+T2 |
| 41 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 43 | 1+(−1.73−i)T+(0.5+0.866i)T2 |
| 47 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 53 | 1+T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 67 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 89 | 1−T+T2 |
| 97 | 1+(−0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.57412507204392932604122735996, −9.489595480128461231313880652289, −8.961920343272576124571207253254, −7.974913179066763630309007449262, −7.06771007184409688590845993697, −6.07712454519151878211262297271, −5.02573130791424161470127936589, −4.08113616362854792679244335778, −2.75969226503359838135478581940, −1.29540585027610531385593859983,
1.02067260218162582006938144824, 2.22188553346566853230913988191, 4.30177137695258627828954065354, 5.34042349022179951479056514552, 5.99723983351032494088585004851, 7.19817905569662309929529293930, 7.46699946029881942192492962638, 8.449296826747297693673260201261, 9.394435600847425396542626112748, 10.42700848390621985474927384794