L(s) = 1 | + (−1.22 − 1.22i)7-s + (1.22 − 1.22i)13-s − i·19-s + 31-s + (−1.22 + 1.22i)43-s + 1.99i·49-s − 61-s + (1.22 + 1.22i)67-s − 2i·79-s − 2.99·91-s + (1.22 + 1.22i)97-s + i·109-s + ⋯ |
L(s) = 1 | + (−1.22 − 1.22i)7-s + (1.22 − 1.22i)13-s − i·19-s + 31-s + (−1.22 + 1.22i)43-s + 1.99i·49-s − 61-s + (1.22 + 1.22i)67-s − 2i·79-s − 2.99·91-s + (1.22 + 1.22i)97-s + i·109-s + ⋯ |
Λ(s)=(=(900s/2ΓC(s)L(s)(0.437+0.899i)Λ(1−s)
Λ(s)=(=(900s/2ΓC(s)L(s)(0.437+0.899i)Λ(1−s)
Degree: |
2 |
Conductor: |
900
= 22⋅32⋅52
|
Sign: |
0.437+0.899i
|
Analytic conductor: |
0.449158 |
Root analytic conductor: |
0.670192 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ900(757,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 900, ( :0), 0.437+0.899i)
|
Particular Values
L(21) |
≈ |
0.8715706983 |
L(21) |
≈ |
0.8715706983 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+(1.22+1.22i)T+iT2 |
| 11 | 1+T2 |
| 13 | 1+(−1.22+1.22i)T−iT2 |
| 17 | 1+iT2 |
| 19 | 1+iT−T2 |
| 23 | 1−iT2 |
| 29 | 1−T2 |
| 31 | 1−T+T2 |
| 37 | 1+iT2 |
| 41 | 1+T2 |
| 43 | 1+(1.22−1.22i)T−iT2 |
| 47 | 1+iT2 |
| 53 | 1−iT2 |
| 59 | 1−T2 |
| 61 | 1+T+T2 |
| 67 | 1+(−1.22−1.22i)T+iT2 |
| 71 | 1+T2 |
| 73 | 1−iT2 |
| 79 | 1+2iT−T2 |
| 83 | 1−iT2 |
| 89 | 1−T2 |
| 97 | 1+(−1.22−1.22i)T+iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.25353791641766692345523681673, −9.462176123197861403004556759528, −8.459720517777055832355086295048, −7.59355858488529286103753863904, −6.66124527685326685047630787162, −6.05536351102163369485977570454, −4.76477946321248790789473686286, −3.65813058030188529823592112323, −2.95675114766430724629736550549, −0.913355882118608624809784294802,
1.87344142490513574483838728023, 3.13224511547547583092011411899, 4.02866988328401533974858982616, 5.40589337535647924101725424261, 6.26353907226557983656036270293, 6.73802011082313426482765853299, 8.170308511243535767782982734029, 8.862893281419158531774215734369, 9.533012411108889551851840406790, 10.32117757414847022994671968457