L(s) = 1 | + (−0.5 − 0.866i)3-s + (−0.5 + 0.866i)11-s + (−1 + 1.73i)17-s − 2·19-s + (−0.5 + 0.866i)25-s − 27-s + 0.999·33-s + (−1 − 1.73i)41-s + (−0.5 − 0.866i)43-s + (−0.5 + 0.866i)49-s + 1.99·51-s + (1 + 1.73i)57-s + (1 + 1.73i)59-s + 67-s + (−1 − 1.73i)73-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)3-s + (−0.5 + 0.866i)11-s + (−1 + 1.73i)17-s − 2·19-s + (−0.5 + 0.866i)25-s − 27-s + 0.999·33-s + (−1 − 1.73i)41-s + (−0.5 − 0.866i)43-s + (−0.5 + 0.866i)49-s + 1.99·51-s + (1 + 1.73i)57-s + (1 + 1.73i)59-s + 67-s + (−1 − 1.73i)73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.421 - 0.907i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.421 - 0.907i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2450395040\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2450395040\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 97 | \( 1 + (0.5 + 0.866i)T \) |
good | 3 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + 2T + T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 - T + T^{2} \) |
| 71 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.879787274606681813387442039881, −8.392242314109835285515641949561, −7.44059513242000742027632490418, −6.84034837741633518865792693516, −6.22481607868057424420343733451, −5.51445091251453794884501302710, −4.39156294253239848070930361960, −3.77528068949820579157003501416, −2.18803829276748699923283381460, −1.70824942684339872176437601431,
0.14588487962323042740174787256, 2.09794552152422887479601829294, 3.02689993280511953731454274230, 4.18535654232123456682614174734, 4.72011249489251468241012098800, 5.42957215311863395141389801652, 6.36238595225842379503116449729, 6.94693610498858726653946230003, 8.211157577544965359464925685891, 8.480831576671176618475018414355