L(s) = 1 | + (1.21 + 0.722i)2-s + (0.5 + 0.866i)3-s + (0.957 + 1.75i)4-s + (−0.403 + 0.403i)5-s + (−0.0173 + 1.41i)6-s + (4.65 − 1.24i)7-s + (−0.103 + 2.82i)8-s + (−0.499 + 0.866i)9-s + (−0.782 + 0.199i)10-s + (−5.72 − 1.53i)11-s + (−1.04 + 1.70i)12-s + (−0.849 − 3.50i)13-s + (6.55 + 1.84i)14-s + (−0.551 − 0.147i)15-s + (−2.16 + 3.36i)16-s + (−0.917 − 0.529i)17-s + ⋯ |
L(s) = 1 | + (0.859 + 0.510i)2-s + (0.288 + 0.499i)3-s + (0.478 + 0.878i)4-s + (−0.180 + 0.180i)5-s + (−0.00707 + 0.577i)6-s + (1.75 − 0.471i)7-s + (−0.0367 + 0.999i)8-s + (−0.166 + 0.288i)9-s + (−0.247 + 0.0630i)10-s + (−1.72 − 0.462i)11-s + (−0.300 + 0.492i)12-s + (−0.235 − 0.971i)13-s + (1.75 + 0.492i)14-s + (−0.142 − 0.0381i)15-s + (−0.541 + 0.840i)16-s + (−0.222 − 0.128i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.280 - 0.959i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.280 - 0.959i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.87433 + 1.40572i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.87433 + 1.40572i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.21 - 0.722i)T \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.849 + 3.50i)T \) |
good | 5 | \( 1 + (0.403 - 0.403i)T - 5iT^{2} \) |
| 7 | \( 1 + (-4.65 + 1.24i)T + (6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (5.72 + 1.53i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (0.917 + 0.529i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.617 + 0.165i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-1.02 - 1.77i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.86 + 2.81i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (2.54 - 2.54i)T - 31iT^{2} \) |
| 37 | \( 1 + (-1.83 + 6.84i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (-1.37 + 5.12i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (8.58 + 4.95i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (5.92 + 5.92i)T + 47iT^{2} \) |
| 53 | \( 1 + 1.19iT - 53T^{2} \) |
| 59 | \( 1 + (-2.11 - 7.89i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-5.30 - 3.06i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.06 - 7.71i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (-0.113 - 0.422i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-7.34 + 7.34i)T - 73iT^{2} \) |
| 79 | \( 1 - 7.20iT - 79T^{2} \) |
| 83 | \( 1 + (-7.79 - 7.79i)T + 83iT^{2} \) |
| 89 | \( 1 + (0.708 + 0.189i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (4.48 - 1.20i)T + (84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.80126851390103744018520781765, −10.94971158950878722184143677308, −10.41663550753948944603668816051, −8.572224232052077672045614458213, −7.914859789168105482097744261705, −7.28819024887384992833941975143, −5.33295879487859266206439775568, −5.11353850305542926006385934902, −3.73829158164811950369885511371, −2.46706692532340034561219214500,
1.72955028165285519362255284505, 2.69148212257369118143788401698, 4.62272924140806578521424537066, 5.02920980458220544177771144573, 6.46959502542741543742210119301, 7.73839109770677943779067740037, 8.417268912617238827666829132441, 9.827435878120612301959142816887, 10.92506088137151534969379597337, 11.60724817434740655909225516300