L(s) = 1 | + (1.21 − 0.722i)2-s + (0.5 − 0.866i)3-s + (0.957 − 1.75i)4-s + (−0.403 − 0.403i)5-s + (−0.0173 − 1.41i)6-s + (4.65 + 1.24i)7-s + (−0.103 − 2.82i)8-s + (−0.499 − 0.866i)9-s + (−0.782 − 0.199i)10-s + (−5.72 + 1.53i)11-s + (−1.04 − 1.70i)12-s + (−0.849 + 3.50i)13-s + (6.55 − 1.84i)14-s + (−0.551 + 0.147i)15-s + (−2.16 − 3.36i)16-s + (−0.917 + 0.529i)17-s + ⋯ |
L(s) = 1 | + (0.859 − 0.510i)2-s + (0.288 − 0.499i)3-s + (0.478 − 0.878i)4-s + (−0.180 − 0.180i)5-s + (−0.00707 − 0.577i)6-s + (1.75 + 0.471i)7-s + (−0.0367 − 0.999i)8-s + (−0.166 − 0.288i)9-s + (−0.247 − 0.0630i)10-s + (−1.72 + 0.462i)11-s + (−0.300 − 0.492i)12-s + (−0.235 + 0.971i)13-s + (1.75 − 0.492i)14-s + (−0.142 + 0.0381i)15-s + (−0.541 − 0.840i)16-s + (−0.222 + 0.128i)17-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(0.280+0.959i)Λ(2−s)
Λ(s)=(=(312s/2ΓC(s+1/2)L(s)(0.280+0.959i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
0.280+0.959i
|
Analytic conductor: |
2.49133 |
Root analytic conductor: |
1.57839 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(19,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :1/2), 0.280+0.959i)
|
Particular Values
L(1) |
≈ |
1.87433−1.40572i |
L(21) |
≈ |
1.87433−1.40572i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.21+0.722i)T |
| 3 | 1+(−0.5+0.866i)T |
| 13 | 1+(0.849−3.50i)T |
good | 5 | 1+(0.403+0.403i)T+5iT2 |
| 7 | 1+(−4.65−1.24i)T+(6.06+3.5i)T2 |
| 11 | 1+(5.72−1.53i)T+(9.52−5.5i)T2 |
| 17 | 1+(0.917−0.529i)T+(8.5−14.7i)T2 |
| 19 | 1+(−0.617−0.165i)T+(16.4+9.5i)T2 |
| 23 | 1+(−1.02+1.77i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−4.86−2.81i)T+(14.5+25.1i)T2 |
| 31 | 1+(2.54+2.54i)T+31iT2 |
| 37 | 1+(−1.83−6.84i)T+(−32.0+18.5i)T2 |
| 41 | 1+(−1.37−5.12i)T+(−35.5+20.5i)T2 |
| 43 | 1+(8.58−4.95i)T+(21.5−37.2i)T2 |
| 47 | 1+(5.92−5.92i)T−47iT2 |
| 53 | 1−1.19iT−53T2 |
| 59 | 1+(−2.11+7.89i)T+(−51.0−29.5i)T2 |
| 61 | 1+(−5.30+3.06i)T+(30.5−52.8i)T2 |
| 67 | 1+(2.06+7.71i)T+(−58.0+33.5i)T2 |
| 71 | 1+(−0.113+0.422i)T+(−61.4−35.5i)T2 |
| 73 | 1+(−7.34−7.34i)T+73iT2 |
| 79 | 1+7.20iT−79T2 |
| 83 | 1+(−7.79+7.79i)T−83iT2 |
| 89 | 1+(0.708−0.189i)T+(77.0−44.5i)T2 |
| 97 | 1+(4.48+1.20i)T+(84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.60724817434740655909225516300, −10.92506088137151534969379597337, −9.827435878120612301959142816887, −8.417268912617238827666829132441, −7.73839109770677943779067740037, −6.46959502542741543742210119301, −5.02920980458220544177771144573, −4.62272924140806578521424537066, −2.69148212257369118143788401698, −1.72955028165285519362255284505,
2.46706692532340034561219214500, 3.73829158164811950369885511371, 5.11353850305542926006385934902, 5.33295879487859266206439775568, 7.28819024887384992833941975143, 7.914859789168105482097744261705, 8.572224232052077672045614458213, 10.41663550753948944603668816051, 10.94971158950878722184143677308, 11.80126851390103744018520781765