L(s) = 1 | + (−0.752 + 1.19i)2-s + 1.73·3-s + (−0.866 − 1.80i)4-s + 1.75i·5-s + (−1.30 + 2.07i)6-s + (2.81 + 0.320i)8-s + 2.99·9-s + (−2.09 − 1.31i)10-s + 1.10·11-s + (−1.49 − 3.12i)12-s + 3.60i·13-s + 3.03i·15-s + (−2.49 + 3.12i)16-s + (−2.25 + 3.59i)18-s + (3.15 − 1.51i)20-s + ⋯ |
L(s) = 1 | + (−0.532 + 0.846i)2-s + 1.00·3-s + (−0.433 − 0.901i)4-s + 0.783i·5-s + (−0.532 + 0.846i)6-s + (0.993 + 0.113i)8-s + 0.999·9-s + (−0.663 − 0.417i)10-s + 0.332·11-s + (−0.433 − 0.901i)12-s + 0.999i·13-s + 0.783i·15-s + (−0.624 + 0.780i)16-s + (−0.532 + 0.846i)18-s + (0.706 − 0.339i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.113 - 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.113 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.02255 + 0.912477i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.02255 + 0.912477i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.752 - 1.19i)T \) |
| 3 | \( 1 - 1.73T \) |
| 13 | \( 1 - 3.60iT \) |
good | 5 | \( 1 - 1.75iT - 5T^{2} \) |
| 7 | \( 1 + 7T^{2} \) |
| 11 | \( 1 - 1.10T + 11T^{2} \) |
| 17 | \( 1 - 17T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 + 37T^{2} \) |
| 41 | \( 1 + 10.1T + 41T^{2} \) |
| 43 | \( 1 + 4T + 43T^{2} \) |
| 47 | \( 1 + 10.0iT - 47T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 - 15.3T + 59T^{2} \) |
| 61 | \( 1 + 7.21iT - 61T^{2} \) |
| 67 | \( 1 - 67T^{2} \) |
| 71 | \( 1 + 16.1iT - 71T^{2} \) |
| 73 | \( 1 - 73T^{2} \) |
| 79 | \( 1 + 14.4iT - 79T^{2} \) |
| 83 | \( 1 - 13.1T + 83T^{2} \) |
| 89 | \( 1 + 18.3T + 89T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.76150149770154442512910280389, −10.59076256896335526656347082120, −9.790944930264312309751835938411, −8.945057030592704456380734094954, −8.134240031510238869984890398152, −7.01871311485049090742622347547, −6.54973789814329705904702681845, −4.88138888580028716771048268666, −3.57600495375720843995593337361, −1.90734758367735076617752238152,
1.27820662276913007429211099988, 2.78094096438367197950775498920, 3.90178490701435354166451066194, 5.06172305045338605043609454373, 7.00001323758669918081997652120, 8.159472256387745527276538829101, 8.610871585631877856682433919312, 9.597446181139234240452748309724, 10.27432909152856690506540220694, 11.44252687879254138984884601749