gp: [N,k,chi] = [312,2,Mod(155,312)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(312, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("312.155");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [8]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 8 + 5 x 4 + 16 x^{8} + 5x^{4} + 16 x 8 + 5 x 4 + 1 6
x^8 + 5*x^4 + 16
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
ν 2 \nu^{2} ν 2
v^2
β 3 \beta_{3} β 3 = = =
( ν 6 + ν 2 ) / 4 ( \nu^{6} + \nu^{2} ) / 4 ( ν 6 + ν 2 ) / 4
(v^6 + v^2) / 4
β 4 \beta_{4} β 4 = = =
( ν 7 + 4 ν 5 + 5 ν 3 + 12 ν ) / 8 ( \nu^{7} + 4\nu^{5} + 5\nu^{3} + 12\nu ) / 8 ( ν 7 + 4 ν 5 + 5 ν 3 + 1 2 ν ) / 8
(v^7 + 4*v^5 + 5*v^3 + 12*v) / 8
β 5 \beta_{5} β 5 = = =
ν 4 + 3 \nu^{4} + 3 ν 4 + 3
v^4 + 3
β 6 \beta_{6} β 6 = = =
( − ν 7 + 4 ν 5 − 5 ν 3 + 12 ν ) / 8 ( -\nu^{7} + 4\nu^{5} - 5\nu^{3} + 12\nu ) / 8 ( − ν 7 + 4 ν 5 − 5 ν 3 + 1 2 ν ) / 8
(-v^7 + 4*v^5 - 5*v^3 + 12*v) / 8
β 7 \beta_{7} β 7 = = =
( − ν 7 − ν 3 ) / 4 ( -\nu^{7} - \nu^{3} ) / 4 ( − ν 7 − ν 3 ) / 4
(-v^7 - v^3) / 4
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 2 \beta_{2} β 2
b2
ν 3 \nu^{3} ν 3 = = =
β 7 − β 6 + β 4 \beta_{7} - \beta_{6} + \beta_{4} β 7 − β 6 + β 4
b7 - b6 + b4
ν 4 \nu^{4} ν 4 = = =
β 5 − 3 \beta_{5} - 3 β 5 − 3
b5 - 3
ν 5 \nu^{5} ν 5 = = =
β 6 + β 4 − 3 β 1 \beta_{6} + \beta_{4} - 3\beta_1 β 6 + β 4 − 3 β 1
b6 + b4 - 3*b1
ν 6 \nu^{6} ν 6 = = =
4 β 3 − β 2 4\beta_{3} - \beta_{2} 4 β 3 − β 2
4*b3 - b2
ν 7 \nu^{7} ν 7 = = =
− 5 β 7 + β 6 − β 4 -5\beta_{7} + \beta_{6} - \beta_{4} − 5 β 7 + β 6 − β 4
-5*b7 + b6 - b4
Character values
We give the values of χ \chi χ on generators for ( Z / 312 Z ) × \left(\mathbb{Z}/312\mathbb{Z}\right)^\times ( Z / 3 1 2 Z ) × .
n n n
79 79 7 9
145 145 1 4 5
157 157 1 5 7
209 209 2 0 9
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− 1 -1 − 1
− 1 -1 − 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 4 + 20 T 5 2 + 52 T_{5}^{4} + 20T_{5}^{2} + 52 T 5 4 + 2 0 T 5 2 + 5 2
T5^4 + 20*T5^2 + 52
acting on S 2 n e w ( 312 , [ χ ] ) S_{2}^{\mathrm{new}}(312, [\chi]) S 2 n e w ( 3 1 2 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 + 5 T 4 + 16 T^{8} + 5T^{4} + 16 T 8 + 5 T 4 + 1 6
T^8 + 5*T^4 + 16
3 3 3
( T 2 − 3 ) 4 (T^{2} - 3)^{4} ( T 2 − 3 ) 4
(T^2 - 3)^4
5 5 5
( T 4 + 20 T 2 + 52 ) 2 (T^{4} + 20 T^{2} + 52)^{2} ( T 4 + 2 0 T 2 + 5 2 ) 2
(T^4 + 20*T^2 + 52)^2
7 7 7
T 8 T^{8} T 8
T^8
11 11 1 1
( T 4 − 44 T 2 + 52 ) 2 (T^{4} - 44 T^{2} + 52)^{2} ( T 4 − 4 4 T 2 + 5 2 ) 2
(T^4 - 44*T^2 + 52)^2
13 13 1 3
( T 2 + 13 ) 4 (T^{2} + 13)^{4} ( T 2 + 1 3 ) 4
(T^2 + 13)^4
17 17 1 7
T 8 T^{8} T 8
T^8
19 19 1 9
T 8 T^{8} T 8
T^8
23 23 2 3
T 8 T^{8} T 8
T^8
29 29 2 9
T 8 T^{8} T 8
T^8
31 31 3 1
T 8 T^{8} T 8
T^8
37 37 3 7
T 8 T^{8} T 8
T^8
41 41 4 1
( T 4 − 164 T 2 + 6292 ) 2 (T^{4} - 164 T^{2} + 6292)^{2} ( T 4 − 1 6 4 T 2 + 6 2 9 2 ) 2
(T^4 - 164*T^2 + 6292)^2
43 43 4 3
( T + 4 ) 8 (T + 4)^{8} ( T + 4 ) 8
(T + 4)^8
47 47 4 7
( T 4 + 188 T 2 + 8788 ) 2 (T^{4} + 188 T^{2} + 8788)^{2} ( T 4 + 1 8 8 T 2 + 8 7 8 8 ) 2
(T^4 + 188*T^2 + 8788)^2
53 53 5 3
T 8 T^{8} T 8
T^8
59 59 5 9
( T 4 − 236 T 2 + 52 ) 2 (T^{4} - 236 T^{2} + 52)^{2} ( T 4 − 2 3 6 T 2 + 5 2 ) 2
(T^4 - 236*T^2 + 52)^2
61 61 6 1
( T 2 + 52 ) 4 (T^{2} + 52)^{4} ( T 2 + 5 2 ) 4
(T^2 + 52)^4
67 67 6 7
T 8 T^{8} T 8
T^8
71 71 7 1
( T 4 + 284 T 2 + 6292 ) 2 (T^{4} + 284 T^{2} + 6292)^{2} ( T 4 + 2 8 4 T 2 + 6 2 9 2 ) 2
(T^4 + 284*T^2 + 6292)^2
73 73 7 3
T 8 T^{8} T 8
T^8
79 79 7 9
( T 2 + 208 ) 4 (T^{2} + 208)^{4} ( T 2 + 2 0 8 ) 4
(T^2 + 208)^4
83 83 8 3
( T 4 − 332 T 2 + 27508 ) 2 (T^{4} - 332 T^{2} + 27508)^{2} ( T 4 − 3 3 2 T 2 + 2 7 5 0 8 ) 2
(T^4 - 332*T^2 + 27508)^2
89 89 8 9
( T 4 − 356 T 2 + 6292 ) 2 (T^{4} - 356 T^{2} + 6292)^{2} ( T 4 − 3 5 6 T 2 + 6 2 9 2 ) 2
(T^4 - 356*T^2 + 6292)^2
97 97 9 7
T 8 T^{8} T 8
T^8
show more
show less