Properties

Label 312.2.h.a
Level 312312
Weight 22
Character orbit 312.h
Analytic conductor 2.4912.491
Analytic rank 00
Dimension 88
CM discriminant -39
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,2,Mod(155,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.155");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 312=23313 312 = 2^{3} \cdot 3 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 312.h (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.491332543062.49133254306
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.151613669376.21
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+5x4+16 x^{8} + 5x^{4} + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+β3q3+β2q4+(β7β4)q5β7q6+(β7β6+β4)q8+3q9+(β52β3β2+1)q10++(3β73β4+6β1)q99+O(q100) q + \beta_1 q^{2} + \beta_{3} q^{3} + \beta_{2} q^{4} + ( - \beta_{7} - \beta_{4}) q^{5} - \beta_{7} q^{6} + (\beta_{7} - \beta_{6} + \beta_{4}) q^{8} + 3 q^{9} + ( - \beta_{5} - 2 \beta_{3} - \beta_{2} + 1) q^{10}+ \cdots + (3 \beta_{7} - 3 \beta_{4} + 6 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+24q9+4q1012q1220q16+28q2240q2536q30+44q4032q4356q49+52q5260q66+96q75+72q81+68q82+4q88+12q90++20q94+O(q100) 8 q + 24 q^{9} + 4 q^{10} - 12 q^{12} - 20 q^{16} + 28 q^{22} - 40 q^{25} - 36 q^{30} + 44 q^{40} - 32 q^{43} - 56 q^{49} + 52 q^{52} - 60 q^{66} + 96 q^{75} + 72 q^{81} + 68 q^{82} + 4 q^{88} + 12 q^{90}+ \cdots + 20 q^{94}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+5x4+16 x^{8} + 5x^{4} + 16 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2 \nu^{2} Copy content Toggle raw display
β3\beta_{3}== (ν6+ν2)/4 ( \nu^{6} + \nu^{2} ) / 4 Copy content Toggle raw display
β4\beta_{4}== (ν7+4ν5+5ν3+12ν)/8 ( \nu^{7} + 4\nu^{5} + 5\nu^{3} + 12\nu ) / 8 Copy content Toggle raw display
β5\beta_{5}== ν4+3 \nu^{4} + 3 Copy content Toggle raw display
β6\beta_{6}== (ν7+4ν55ν3+12ν)/8 ( -\nu^{7} + 4\nu^{5} - 5\nu^{3} + 12\nu ) / 8 Copy content Toggle raw display
β7\beta_{7}== (ν7ν3)/4 ( -\nu^{7} - \nu^{3} ) / 4 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2 \beta_{2} Copy content Toggle raw display
ν3\nu^{3}== β7β6+β4 \beta_{7} - \beta_{6} + \beta_{4} Copy content Toggle raw display
ν4\nu^{4}== β53 \beta_{5} - 3 Copy content Toggle raw display
ν5\nu^{5}== β6+β43β1 \beta_{6} + \beta_{4} - 3\beta_1 Copy content Toggle raw display
ν6\nu^{6}== 4β3β2 4\beta_{3} - \beta_{2} Copy content Toggle raw display
ν7\nu^{7}== 5β7+β6β4 -5\beta_{7} + \beta_{6} - \beta_{4} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/312Z)×\left(\mathbb{Z}/312\mathbb{Z}\right)^\times.

nn 7979 145145 157157 209209
χ(n)\chi(n) 1-1 1-1 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
155.1
−1.19709 0.752986i
−1.19709 + 0.752986i
−0.752986 1.19709i
−0.752986 + 1.19709i
0.752986 1.19709i
0.752986 + 1.19709i
1.19709 0.752986i
1.19709 + 0.752986i
−1.19709 0.752986i −1.73205 0.866025 + 1.80278i 4.11439i 2.07341 + 1.30421i 0 0.320758 2.81018i 3.00000 3.09808 4.92527i
155.2 −1.19709 + 0.752986i −1.73205 0.866025 1.80278i 4.11439i 2.07341 1.30421i 0 0.320758 + 2.81018i 3.00000 3.09808 + 4.92527i
155.3 −0.752986 1.19709i 1.73205 −0.866025 + 1.80278i 1.75265i −1.30421 2.07341i 0 2.81018 0.320758i 3.00000 −2.09808 + 1.31972i
155.4 −0.752986 + 1.19709i 1.73205 −0.866025 1.80278i 1.75265i −1.30421 + 2.07341i 0 2.81018 + 0.320758i 3.00000 −2.09808 1.31972i
155.5 0.752986 1.19709i 1.73205 −0.866025 1.80278i 1.75265i 1.30421 2.07341i 0 −2.81018 0.320758i 3.00000 −2.09808 1.31972i
155.6 0.752986 + 1.19709i 1.73205 −0.866025 + 1.80278i 1.75265i 1.30421 + 2.07341i 0 −2.81018 + 0.320758i 3.00000 −2.09808 + 1.31972i
155.7 1.19709 0.752986i −1.73205 0.866025 1.80278i 4.11439i −2.07341 + 1.30421i 0 −0.320758 2.81018i 3.00000 3.09808 + 4.92527i
155.8 1.19709 + 0.752986i −1.73205 0.866025 + 1.80278i 4.11439i −2.07341 1.30421i 0 −0.320758 + 2.81018i 3.00000 3.09808 4.92527i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 155.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
39.d odd 2 1 CM by Q(39)\Q(\sqrt{-39})
3.b odd 2 1 inner
8.d odd 2 1 inner
13.b even 2 1 inner
24.f even 2 1 inner
104.h odd 2 1 inner
312.h even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 312.2.h.a 8
3.b odd 2 1 inner 312.2.h.a 8
4.b odd 2 1 1248.2.h.a 8
8.b even 2 1 1248.2.h.a 8
8.d odd 2 1 inner 312.2.h.a 8
12.b even 2 1 1248.2.h.a 8
13.b even 2 1 inner 312.2.h.a 8
24.f even 2 1 inner 312.2.h.a 8
24.h odd 2 1 1248.2.h.a 8
39.d odd 2 1 CM 312.2.h.a 8
52.b odd 2 1 1248.2.h.a 8
104.e even 2 1 1248.2.h.a 8
104.h odd 2 1 inner 312.2.h.a 8
156.h even 2 1 1248.2.h.a 8
312.b odd 2 1 1248.2.h.a 8
312.h even 2 1 inner 312.2.h.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.2.h.a 8 1.a even 1 1 trivial
312.2.h.a 8 3.b odd 2 1 inner
312.2.h.a 8 8.d odd 2 1 inner
312.2.h.a 8 13.b even 2 1 inner
312.2.h.a 8 24.f even 2 1 inner
312.2.h.a 8 39.d odd 2 1 CM
312.2.h.a 8 104.h odd 2 1 inner
312.2.h.a 8 312.h even 2 1 inner
1248.2.h.a 8 4.b odd 2 1
1248.2.h.a 8 8.b even 2 1
1248.2.h.a 8 12.b even 2 1
1248.2.h.a 8 24.h odd 2 1
1248.2.h.a 8 52.b odd 2 1
1248.2.h.a 8 104.e even 2 1
1248.2.h.a 8 156.h even 2 1
1248.2.h.a 8 312.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T54+20T52+52 T_{5}^{4} + 20T_{5}^{2} + 52 acting on S2new(312,[χ])S_{2}^{\mathrm{new}}(312, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8+5T4+16 T^{8} + 5T^{4} + 16 Copy content Toggle raw display
33 (T23)4 (T^{2} - 3)^{4} Copy content Toggle raw display
55 (T4+20T2+52)2 (T^{4} + 20 T^{2} + 52)^{2} Copy content Toggle raw display
77 T8 T^{8} Copy content Toggle raw display
1111 (T444T2+52)2 (T^{4} - 44 T^{2} + 52)^{2} Copy content Toggle raw display
1313 (T2+13)4 (T^{2} + 13)^{4} Copy content Toggle raw display
1717 T8 T^{8} Copy content Toggle raw display
1919 T8 T^{8} Copy content Toggle raw display
2323 T8 T^{8} Copy content Toggle raw display
2929 T8 T^{8} Copy content Toggle raw display
3131 T8 T^{8} Copy content Toggle raw display
3737 T8 T^{8} Copy content Toggle raw display
4141 (T4164T2+6292)2 (T^{4} - 164 T^{2} + 6292)^{2} Copy content Toggle raw display
4343 (T+4)8 (T + 4)^{8} Copy content Toggle raw display
4747 (T4+188T2+8788)2 (T^{4} + 188 T^{2} + 8788)^{2} Copy content Toggle raw display
5353 T8 T^{8} Copy content Toggle raw display
5959 (T4236T2+52)2 (T^{4} - 236 T^{2} + 52)^{2} Copy content Toggle raw display
6161 (T2+52)4 (T^{2} + 52)^{4} Copy content Toggle raw display
6767 T8 T^{8} Copy content Toggle raw display
7171 (T4+284T2+6292)2 (T^{4} + 284 T^{2} + 6292)^{2} Copy content Toggle raw display
7373 T8 T^{8} Copy content Toggle raw display
7979 (T2+208)4 (T^{2} + 208)^{4} Copy content Toggle raw display
8383 (T4332T2+27508)2 (T^{4} - 332 T^{2} + 27508)^{2} Copy content Toggle raw display
8989 (T4356T2+6292)2 (T^{4} - 356 T^{2} + 6292)^{2} Copy content Toggle raw display
9797 T8 T^{8} Copy content Toggle raw display
show more
show less