L(s) = 1 | + (−0.752 + 1.19i)2-s + 1.73·3-s + (−0.866 − 1.80i)4-s + 1.75i·5-s + (−1.30 + 2.07i)6-s + (2.81 + 0.320i)8-s + 2.99·9-s + (−2.09 − 1.31i)10-s + 1.10·11-s + (−1.49 − 3.12i)12-s + 3.60i·13-s + 3.03i·15-s + (−2.49 + 3.12i)16-s + (−2.25 + 3.59i)18-s + (3.15 − 1.51i)20-s + ⋯ |
L(s) = 1 | + (−0.532 + 0.846i)2-s + 1.00·3-s + (−0.433 − 0.901i)4-s + 0.783i·5-s + (−0.532 + 0.846i)6-s + (0.993 + 0.113i)8-s + 0.999·9-s + (−0.663 − 0.417i)10-s + 0.332·11-s + (−0.433 − 0.901i)12-s + 0.999i·13-s + 0.783i·15-s + (−0.624 + 0.780i)16-s + (−0.532 + 0.846i)18-s + (0.706 − 0.339i)20-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(0.113−0.993i)Λ(2−s)
Λ(s)=(=(312s/2ΓC(s+1/2)L(s)(0.113−0.993i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
0.113−0.993i
|
Analytic conductor: |
2.49133 |
Root analytic conductor: |
1.57839 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(155,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :1/2), 0.113−0.993i)
|
Particular Values
L(1) |
≈ |
1.02255+0.912477i |
L(21) |
≈ |
1.02255+0.912477i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.752−1.19i)T |
| 3 | 1−1.73T |
| 13 | 1−3.60iT |
good | 5 | 1−1.75iT−5T2 |
| 7 | 1+7T2 |
| 11 | 1−1.10T+11T2 |
| 17 | 1−17T2 |
| 19 | 1−19T2 |
| 23 | 1+23T2 |
| 29 | 1+29T2 |
| 31 | 1+31T2 |
| 37 | 1+37T2 |
| 41 | 1+10.1T+41T2 |
| 43 | 1+4T+43T2 |
| 47 | 1+10.0iT−47T2 |
| 53 | 1+53T2 |
| 59 | 1−15.3T+59T2 |
| 61 | 1+7.21iT−61T2 |
| 67 | 1−67T2 |
| 71 | 1+16.1iT−71T2 |
| 73 | 1−73T2 |
| 79 | 1+14.4iT−79T2 |
| 83 | 1−13.1T+83T2 |
| 89 | 1+18.3T+89T2 |
| 97 | 1−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.76150149770154442512910280389, −10.59076256896335526656347082120, −9.790944930264312309751835938411, −8.945057030592704456380734094954, −8.134240031510238869984890398152, −7.01871311485049090742622347547, −6.54973789814329705904702681845, −4.88138888580028716771048268666, −3.57600495375720843995593337361, −1.90734758367735076617752238152,
1.27820662276913007429211099988, 2.78094096438367197950775498920, 3.90178490701435354166451066194, 5.06172305045338605043609454373, 7.00001323758669918081997652120, 8.159472256387745527276538829101, 8.610871585631877856682433919312, 9.597446181139234240452748309724, 10.27432909152856690506540220694, 11.44252687879254138984884601749