L(s) = 1 | − 0.689·2-s − 0.902·3-s − 1.52·4-s + 3.70·5-s + 0.622·6-s + 0.763·7-s + 2.43·8-s − 2.18·9-s − 2.55·10-s − 4.11·11-s + 1.37·12-s − 2.90·13-s − 0.526·14-s − 3.34·15-s + 1.37·16-s + 1.30·17-s + 1.50·18-s − 3.79·19-s − 5.65·20-s − 0.688·21-s + 2.83·22-s − 3.28·23-s − 2.19·24-s + 8.74·25-s + 2.00·26-s + 4.67·27-s − 1.16·28-s + ⋯ |
L(s) = 1 | − 0.487·2-s − 0.521·3-s − 0.762·4-s + 1.65·5-s + 0.254·6-s + 0.288·7-s + 0.859·8-s − 0.728·9-s − 0.808·10-s − 1.24·11-s + 0.397·12-s − 0.807·13-s − 0.140·14-s − 0.863·15-s + 0.343·16-s + 0.317·17-s + 0.355·18-s − 0.871·19-s − 1.26·20-s − 0.150·21-s + 0.604·22-s − 0.684·23-s − 0.447·24-s + 1.74·25-s + 0.393·26-s + 0.900·27-s − 0.219·28-s + ⋯ |
Λ(s)=(=(961s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(961s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 31 | 1 |
good | 2 | 1+0.689T+2T2 |
| 3 | 1+0.902T+3T2 |
| 5 | 1−3.70T+5T2 |
| 7 | 1−0.763T+7T2 |
| 11 | 1+4.11T+11T2 |
| 13 | 1+2.90T+13T2 |
| 17 | 1−1.30T+17T2 |
| 19 | 1+3.79T+19T2 |
| 23 | 1+3.28T+23T2 |
| 29 | 1−4.89T+29T2 |
| 37 | 1+10.4T+37T2 |
| 41 | 1−0.755T+41T2 |
| 43 | 1+7.15T+43T2 |
| 47 | 1+0.876T+47T2 |
| 53 | 1−3.57T+53T2 |
| 59 | 1−0.927T+59T2 |
| 61 | 1−2.31T+61T2 |
| 67 | 1+2.08T+67T2 |
| 71 | 1+7.73T+71T2 |
| 73 | 1+5.65T+73T2 |
| 79 | 1+14.0T+79T2 |
| 83 | 1+14.1T+83T2 |
| 89 | 1+4.43T+89T2 |
| 97 | 1+5.27T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.902547165850844118335709401932, −8.725562600416251022036214881991, −8.273402468220325774017930799560, −7.04583291072696465698228038489, −5.91842195853596301366673049099, −5.31472489550988600660446395121, −4.67819292569890196664591076752, −2.84786392983352421331922844007, −1.74651535124718702871677050199, 0,
1.74651535124718702871677050199, 2.84786392983352421331922844007, 4.67819292569890196664591076752, 5.31472489550988600660446395121, 5.91842195853596301366673049099, 7.04583291072696465698228038489, 8.273402468220325774017930799560, 8.725562600416251022036214881991, 9.902547165850844118335709401932