Properties

Label 2-31e2-1.1-c1-0-39
Degree $2$
Conductor $961$
Sign $-1$
Analytic cond. $7.67362$
Root an. cond. $2.77013$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.689·2-s − 0.902·3-s − 1.52·4-s + 3.70·5-s + 0.622·6-s + 0.763·7-s + 2.43·8-s − 2.18·9-s − 2.55·10-s − 4.11·11-s + 1.37·12-s − 2.90·13-s − 0.526·14-s − 3.34·15-s + 1.37·16-s + 1.30·17-s + 1.50·18-s − 3.79·19-s − 5.65·20-s − 0.688·21-s + 2.83·22-s − 3.28·23-s − 2.19·24-s + 8.74·25-s + 2.00·26-s + 4.67·27-s − 1.16·28-s + ⋯
L(s)  = 1  − 0.487·2-s − 0.521·3-s − 0.762·4-s + 1.65·5-s + 0.254·6-s + 0.288·7-s + 0.859·8-s − 0.728·9-s − 0.808·10-s − 1.24·11-s + 0.397·12-s − 0.807·13-s − 0.140·14-s − 0.863·15-s + 0.343·16-s + 0.317·17-s + 0.355·18-s − 0.871·19-s − 1.26·20-s − 0.150·21-s + 0.604·22-s − 0.684·23-s − 0.447·24-s + 1.74·25-s + 0.393·26-s + 0.900·27-s − 0.219·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(961\)    =    \(31^{2}\)
Sign: $-1$
Analytic conductor: \(7.67362\)
Root analytic conductor: \(2.77013\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 961,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 \)
good2 \( 1 + 0.689T + 2T^{2} \)
3 \( 1 + 0.902T + 3T^{2} \)
5 \( 1 - 3.70T + 5T^{2} \)
7 \( 1 - 0.763T + 7T^{2} \)
11 \( 1 + 4.11T + 11T^{2} \)
13 \( 1 + 2.90T + 13T^{2} \)
17 \( 1 - 1.30T + 17T^{2} \)
19 \( 1 + 3.79T + 19T^{2} \)
23 \( 1 + 3.28T + 23T^{2} \)
29 \( 1 - 4.89T + 29T^{2} \)
37 \( 1 + 10.4T + 37T^{2} \)
41 \( 1 - 0.755T + 41T^{2} \)
43 \( 1 + 7.15T + 43T^{2} \)
47 \( 1 + 0.876T + 47T^{2} \)
53 \( 1 - 3.57T + 53T^{2} \)
59 \( 1 - 0.927T + 59T^{2} \)
61 \( 1 - 2.31T + 61T^{2} \)
67 \( 1 + 2.08T + 67T^{2} \)
71 \( 1 + 7.73T + 71T^{2} \)
73 \( 1 + 5.65T + 73T^{2} \)
79 \( 1 + 14.0T + 79T^{2} \)
83 \( 1 + 14.1T + 83T^{2} \)
89 \( 1 + 4.43T + 89T^{2} \)
97 \( 1 + 5.27T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.902547165850844118335709401932, −8.725562600416251022036214881991, −8.273402468220325774017930799560, −7.04583291072696465698228038489, −5.91842195853596301366673049099, −5.31472489550988600660446395121, −4.67819292569890196664591076752, −2.84786392983352421331922844007, −1.74651535124718702871677050199, 0, 1.74651535124718702871677050199, 2.84786392983352421331922844007, 4.67819292569890196664591076752, 5.31472489550988600660446395121, 5.91842195853596301366673049099, 7.04583291072696465698228038489, 8.273402468220325774017930799560, 8.725562600416251022036214881991, 9.902547165850844118335709401932

Graph of the $Z$-function along the critical line