Properties

Label 961.2.a.i.1.3
Level 961961
Weight 22
Character 961.1
Self dual yes
Analytic conductor 7.6747.674
Analytic rank 11
Dimension 88
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(1,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 961=312 961 = 31^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 961.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 7.673623634257.67362363425
Analytic rank: 11
Dimension: 88
Coefficient field: 8.8.2051578125.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x82x79x6+19x5+14x428x311x2+6x+1 x^{8} - 2x^{7} - 9x^{6} + 19x^{5} + 14x^{4} - 28x^{3} - 11x^{2} + 6x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 31)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.3
Root 2.73366-2.73366 of defining polynomial
Character χ\chi == 961.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q0.689493q20.902401q31.52460q4+3.70752q5+0.622199q6+0.763394q7+2.43019q82.18567q92.55631q104.11562q11+1.37580q122.90975q130.526355q143.34567q15+1.37360q16+1.30852q17+1.50701q183.79954q195.65248q200.688887q21+2.83769q223.28296q232.19300q24+8.74568q25+2.00625q26+4.67956q271.16387q28+4.89563q29+2.30681q305.80746q32+3.71394q330.902218q34+2.83030q35+3.33228q3610.4128q37+2.61976q38+2.62576q39+9.00995q40+0.755946q41+0.474983q427.15689q43+6.27468q448.10342q45+2.26358q460.876067q471.23954q486.41723q496.03008q501.18081q51+4.43621q52+3.57570q533.22652q5415.2587q55+1.85519q56+3.42871q573.37550q58+0.927270q59+5.10080q60+2.31704q611.66853q63+1.25699q6410.7879q652.56074q662.08690q671.99498q68+2.96254q691.95147q707.73608q715.31159q725.65748q73+7.17954q747.89211q75+5.79278q763.14184q771.81044q7814.0947q79+5.09266q80+2.33418q810.521219q8214.1077q83+1.05028q84+4.85137q85+4.93462q864.41782q8710.0017q884.43481q89+5.58725q902.22129q91+5.00520q92+0.604042q9414.0869q95+5.24066q965.27764q97+4.42463q98+8.99540q99+O(q100)q-0.689493 q^{2} -0.902401 q^{3} -1.52460 q^{4} +3.70752 q^{5} +0.622199 q^{6} +0.763394 q^{7} +2.43019 q^{8} -2.18567 q^{9} -2.55631 q^{10} -4.11562 q^{11} +1.37580 q^{12} -2.90975 q^{13} -0.526355 q^{14} -3.34567 q^{15} +1.37360 q^{16} +1.30852 q^{17} +1.50701 q^{18} -3.79954 q^{19} -5.65248 q^{20} -0.688887 q^{21} +2.83769 q^{22} -3.28296 q^{23} -2.19300 q^{24} +8.74568 q^{25} +2.00625 q^{26} +4.67956 q^{27} -1.16387 q^{28} +4.89563 q^{29} +2.30681 q^{30} -5.80746 q^{32} +3.71394 q^{33} -0.902218 q^{34} +2.83030 q^{35} +3.33228 q^{36} -10.4128 q^{37} +2.61976 q^{38} +2.62576 q^{39} +9.00995 q^{40} +0.755946 q^{41} +0.474983 q^{42} -7.15689 q^{43} +6.27468 q^{44} -8.10342 q^{45} +2.26358 q^{46} -0.876067 q^{47} -1.23954 q^{48} -6.41723 q^{49} -6.03008 q^{50} -1.18081 q^{51} +4.43621 q^{52} +3.57570 q^{53} -3.22652 q^{54} -15.2587 q^{55} +1.85519 q^{56} +3.42871 q^{57} -3.37550 q^{58} +0.927270 q^{59} +5.10080 q^{60} +2.31704 q^{61} -1.66853 q^{63} +1.25699 q^{64} -10.7879 q^{65} -2.56074 q^{66} -2.08690 q^{67} -1.99498 q^{68} +2.96254 q^{69} -1.95147 q^{70} -7.73608 q^{71} -5.31159 q^{72} -5.65748 q^{73} +7.17954 q^{74} -7.89211 q^{75} +5.79278 q^{76} -3.14184 q^{77} -1.81044 q^{78} -14.0947 q^{79} +5.09266 q^{80} +2.33418 q^{81} -0.521219 q^{82} -14.1077 q^{83} +1.05028 q^{84} +4.85137 q^{85} +4.93462 q^{86} -4.41782 q^{87} -10.0017 q^{88} -4.43481 q^{89} +5.58725 q^{90} -2.22129 q^{91} +5.00520 q^{92} +0.604042 q^{94} -14.0869 q^{95} +5.24066 q^{96} -5.27764 q^{97} +4.42463 q^{98} +8.99540 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+2q23q3+8q4+3q511q62q79q8+5q913q1018q118q139q1418q15+4q1614q17+23q186q197q20+q21+6q99+O(q100) 8 q + 2 q^{2} - 3 q^{3} + 8 q^{4} + 3 q^{5} - 11 q^{6} - 2 q^{7} - 9 q^{8} + 5 q^{9} - 13 q^{10} - 18 q^{11} - 8 q^{13} - 9 q^{14} - 18 q^{15} + 4 q^{16} - 14 q^{17} + 23 q^{18} - 6 q^{19} - 7 q^{20} + q^{21}+ \cdots - 6 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.689493 −0.487545 −0.243772 0.969832i 0.578385π-0.578385\pi
−0.243772 + 0.969832i 0.578385π0.578385\pi
33 −0.902401 −0.521001 −0.260501 0.965474i 0.583888π-0.583888\pi
−0.260501 + 0.965474i 0.583888π0.583888\pi
44 −1.52460 −0.762300
55 3.70752 1.65805 0.829026 0.559210i 0.188896π-0.188896\pi
0.829026 + 0.559210i 0.188896π0.188896\pi
66 0.622199 0.254012
77 0.763394 0.288536 0.144268 0.989539i 0.453917π-0.453917\pi
0.144268 + 0.989539i 0.453917π0.453917\pi
88 2.43019 0.859200
99 −2.18567 −0.728558
1010 −2.55631 −0.808375
1111 −4.11562 −1.24091 −0.620453 0.784243i 0.713051π-0.713051\pi
−0.620453 + 0.784243i 0.713051π0.713051\pi
1212 1.37580 0.397159
1313 −2.90975 −0.807020 −0.403510 0.914975i 0.632210π-0.632210\pi
−0.403510 + 0.914975i 0.632210π0.632210\pi
1414 −0.526355 −0.140674
1515 −3.34567 −0.863847
1616 1.37360 0.343401
1717 1.30852 0.317364 0.158682 0.987330i 0.449276π-0.449276\pi
0.158682 + 0.987330i 0.449276π0.449276\pi
1818 1.50701 0.355205
1919 −3.79954 −0.871675 −0.435837 0.900025i 0.643548π-0.643548\pi
−0.435837 + 0.900025i 0.643548π0.643548\pi
2020 −5.65248 −1.26393
2121 −0.688887 −0.150328
2222 2.83769 0.604998
2323 −3.28296 −0.684544 −0.342272 0.939601i 0.611196π-0.611196\pi
−0.342272 + 0.939601i 0.611196π0.611196\pi
2424 −2.19300 −0.447645
2525 8.74568 1.74914
2626 2.00625 0.393458
2727 4.67956 0.900581
2828 −1.16387 −0.219951
2929 4.89563 0.909096 0.454548 0.890722i 0.349801π-0.349801\pi
0.454548 + 0.890722i 0.349801π0.349801\pi
3030 2.30681 0.421164
3131 0 0
3232 −5.80746 −1.02662
3333 3.71394 0.646514
3434 −0.902218 −0.154729
3535 2.83030 0.478407
3636 3.33228 0.555379
3737 −10.4128 −1.71185 −0.855925 0.517099i 0.827012π-0.827012\pi
−0.855925 + 0.517099i 0.827012π0.827012\pi
3838 2.61976 0.424981
3939 2.62576 0.420458
4040 9.00995 1.42460
4141 0.755946 0.118059 0.0590295 0.998256i 0.481199π-0.481199\pi
0.0590295 + 0.998256i 0.481199π0.481199\pi
4242 0.474983 0.0732914
4343 −7.15689 −1.09142 −0.545708 0.837976i 0.683739π-0.683739\pi
−0.545708 + 0.837976i 0.683739π0.683739\pi
4444 6.27468 0.945943
4545 −8.10342 −1.20799
4646 2.26358 0.333746
4747 −0.876067 −0.127787 −0.0638937 0.997957i 0.520352π-0.520352\pi
−0.0638937 + 0.997957i 0.520352π0.520352\pi
4848 −1.23954 −0.178912
4949 −6.41723 −0.916747
5050 −6.03008 −0.852782
5151 −1.18081 −0.165347
5252 4.43621 0.615191
5353 3.57570 0.491161 0.245580 0.969376i 0.421021π-0.421021\pi
0.245580 + 0.969376i 0.421021π0.421021\pi
5454 −3.22652 −0.439074
5555 −15.2587 −2.05749
5656 1.85519 0.247910
5757 3.42871 0.454144
5858 −3.37550 −0.443225
5959 0.927270 0.120720 0.0603601 0.998177i 0.480775π-0.480775\pi
0.0603601 + 0.998177i 0.480775π0.480775\pi
6060 5.10080 0.658511
6161 2.31704 0.296666 0.148333 0.988937i 0.452609π-0.452609\pi
0.148333 + 0.988937i 0.452609π0.452609\pi
6262 0 0
6363 −1.66853 −0.210215
6464 1.25699 0.157124
6565 −10.7879 −1.33808
6666 −2.56074 −0.315205
6767 −2.08690 −0.254955 −0.127478 0.991841i 0.540688π-0.540688\pi
−0.127478 + 0.991841i 0.540688π0.540688\pi
6868 −1.99498 −0.241926
6969 2.96254 0.356648
7070 −1.95147 −0.233245
7171 −7.73608 −0.918104 −0.459052 0.888409i 0.651811π-0.651811\pi
−0.459052 + 0.888409i 0.651811π0.651811\pi
7272 −5.31159 −0.625977
7373 −5.65748 −0.662158 −0.331079 0.943603i 0.607413π-0.607413\pi
−0.331079 + 0.943603i 0.607413π0.607413\pi
7474 7.17954 0.834604
7575 −7.89211 −0.911302
7676 5.79278 0.664477
7777 −3.14184 −0.358046
7878 −1.81044 −0.204992
7979 −14.0947 −1.58578 −0.792890 0.609365i 0.791424π-0.791424\pi
−0.792890 + 0.609365i 0.791424π0.791424\pi
8080 5.09266 0.569377
8181 2.33418 0.259354
8282 −0.521219 −0.0575590
8383 −14.1077 −1.54852 −0.774261 0.632866i 0.781878π-0.781878\pi
−0.774261 + 0.632866i 0.781878π0.781878\pi
8484 1.05028 0.114595
8585 4.85137 0.526205
8686 4.93462 0.532114
8787 −4.41782 −0.473640
8888 −10.0017 −1.06619
8989 −4.43481 −0.470089 −0.235045 0.971985i 0.575524π-0.575524\pi
−0.235045 + 0.971985i 0.575524π0.575524\pi
9090 5.58725 0.588948
9191 −2.22129 −0.232854
9292 5.00520 0.521828
9393 0 0
9494 0.604042 0.0623021
9595 −14.0869 −1.44528
9696 5.24066 0.534872
9797 −5.27764 −0.535863 −0.267932 0.963438i 0.586340π-0.586340\pi
−0.267932 + 0.963438i 0.586340π0.586340\pi
9898 4.42463 0.446955
9999 8.99540 0.904072
100100 −13.3337 −1.33337
101101 3.80743 0.378853 0.189427 0.981895i 0.439337π-0.439337\pi
0.189427 + 0.981895i 0.439337π0.439337\pi
102102 0.814162 0.0806141
103103 −6.24569 −0.615406 −0.307703 0.951482i 0.599560π-0.599560\pi
−0.307703 + 0.951482i 0.599560π0.599560\pi
104104 −7.07124 −0.693392
105105 −2.55406 −0.249251
106106 −2.46542 −0.239463
107107 2.32738 0.224997 0.112498 0.993652i 0.464115π-0.464115\pi
0.112498 + 0.993652i 0.464115π0.464115\pi
108108 −7.13445 −0.686513
109109 1.47683 0.141454 0.0707272 0.997496i 0.477468π-0.477468\pi
0.0707272 + 0.997496i 0.477468π0.477468\pi
110110 10.5208 1.00312
111111 9.39650 0.891877
112112 1.04860 0.0990835
113113 6.38055 0.600231 0.300116 0.953903i 0.402975π-0.402975\pi
0.300116 + 0.953903i 0.402975π0.402975\pi
114114 −2.36407 −0.221415
115115 −12.1716 −1.13501
116116 −7.46388 −0.693004
117117 6.35976 0.587960
118118 −0.639346 −0.0588566
119119 0.998919 0.0915708
120120 −8.13059 −0.742218
121121 5.93835 0.539850
122122 −1.59758 −0.144638
123123 −0.682166 −0.0615089
124124 0 0
125125 13.8872 1.24211
126126 1.15044 0.102489
127127 −1.43201 −0.127071 −0.0635354 0.997980i 0.520238π-0.520238\pi
−0.0635354 + 0.997980i 0.520238π0.520238\pi
128128 10.7482 0.950019
129129 6.45838 0.568629
130130 7.43821 0.652374
131131 6.29290 0.549813 0.274907 0.961471i 0.411353π-0.411353\pi
0.274907 + 0.961471i 0.411353π0.411353\pi
132132 −5.66227 −0.492838
133133 −2.90055 −0.251509
134134 1.43890 0.124302
135135 17.3495 1.49321
136136 3.17996 0.272679
137137 12.7499 1.08930 0.544649 0.838664i 0.316663π-0.316663\pi
0.544649 + 0.838664i 0.316663π0.316663\pi
138138 −2.04265 −0.173882
139139 18.7137 1.58728 0.793640 0.608388i 0.208184π-0.208184\pi
0.793640 + 0.608388i 0.208184π0.208184\pi
140140 −4.31507 −0.364690
141141 0.790563 0.0665774
142142 5.33397 0.447617
143143 11.9754 1.00144
144144 −3.00225 −0.250187
145145 18.1506 1.50733
146146 3.90079 0.322832
147147 5.79091 0.477627
148148 15.8753 1.30494
149149 −20.1353 −1.64955 −0.824774 0.565462i 0.808698π-0.808698\pi
−0.824774 + 0.565462i 0.808698π0.808698\pi
150150 5.44155 0.444301
151151 15.3725 1.25099 0.625497 0.780227i 0.284896π-0.284896\pi
0.625497 + 0.780227i 0.284896π0.284896\pi
152152 −9.23359 −0.748943
153153 −2.86001 −0.231218
154154 2.16628 0.174564
155155 0 0
156156 −4.00324 −0.320515
157157 15.1473 1.20888 0.604442 0.796649i 0.293396π-0.293396\pi
0.604442 + 0.796649i 0.293396π0.293396\pi
158158 9.71821 0.773139
159159 −3.22672 −0.255895
160160 −21.5313 −1.70220
161161 −2.50619 −0.197515
162162 −1.60940 −0.126447
163163 −1.04487 −0.0818405 −0.0409202 0.999162i 0.513029π-0.513029\pi
−0.0409202 + 0.999162i 0.513029π0.513029\pi
164164 −1.15251 −0.0899963
165165 13.7695 1.07195
166166 9.72717 0.754975
167167 −11.2894 −0.873600 −0.436800 0.899559i 0.643888π-0.643888\pi
−0.436800 + 0.899559i 0.643888π0.643888\pi
168168 −1.67412 −0.129161
169169 −4.53335 −0.348719
170170 −3.34499 −0.256549
171171 8.30455 0.635065
172172 10.9114 0.831986
173173 −20.6527 −1.57019 −0.785097 0.619373i 0.787387π-0.787387\pi
−0.785097 + 0.619373i 0.787387π0.787387\pi
174174 3.04606 0.230921
175175 6.67640 0.504688
176176 −5.65324 −0.426129
177177 −0.836769 −0.0628954
178178 3.05777 0.229190
179179 −0.131662 −0.00984091 −0.00492045 0.999988i 0.501566π-0.501566\pi
−0.00492045 + 0.999988i 0.501566π0.501566\pi
180180 12.3545 0.920848
181181 7.73199 0.574714 0.287357 0.957824i 0.407223π-0.407223\pi
0.287357 + 0.957824i 0.407223π0.407223\pi
182182 1.53156 0.113527
183183 −2.09090 −0.154564
184184 −7.97820 −0.588161
185185 −38.6056 −2.83834
186186 0 0
187187 −5.38539 −0.393819
188188 1.33565 0.0974124
189189 3.57234 0.259850
190190 9.71279 0.704640
191191 −21.1027 −1.52694 −0.763468 0.645846i 0.776505π-0.776505\pi
−0.763468 + 0.645846i 0.776505π0.776505\pi
192192 −1.13431 −0.0818620
193193 5.66324 0.407649 0.203824 0.979007i 0.434663π-0.434663\pi
0.203824 + 0.979007i 0.434663π0.434663\pi
194194 3.63889 0.261257
195195 9.73506 0.697142
196196 9.78371 0.698836
197197 15.9148 1.13388 0.566941 0.823758i 0.308127π-0.308127\pi
0.566941 + 0.823758i 0.308127π0.308127\pi
198198 −6.20227 −0.440776
199199 −4.26145 −0.302086 −0.151043 0.988527i 0.548263π-0.548263\pi
−0.151043 + 0.988527i 0.548263π0.548263\pi
200200 21.2536 1.50286
201201 1.88322 0.132832
202202 −2.62520 −0.184708
203203 3.73730 0.262307
204204 1.80027 0.126044
205205 2.80268 0.195748
206206 4.30636 0.300038
207207 7.17547 0.498730
208208 −3.99685 −0.277131
209209 15.6375 1.08167
210210 1.76101 0.121521
211211 −11.5083 −0.792263 −0.396131 0.918194i 0.629648π-0.629648\pi
−0.396131 + 0.918194i 0.629648π0.629648\pi
212212 −5.45152 −0.374412
213213 6.98105 0.478334
214214 −1.60471 −0.109696
215215 −26.5343 −1.80962
216216 11.3722 0.773780
217217 0 0
218218 −1.01826 −0.0689654
219219 5.10531 0.344985
220220 23.2635 1.56842
221221 −3.80748 −0.256119
222222 −6.47882 −0.434830
223223 9.42391 0.631072 0.315536 0.948914i 0.397816π-0.397816\pi
0.315536 + 0.948914i 0.397816π0.397816\pi
224224 −4.43338 −0.296218
225225 −19.1152 −1.27435
226226 −4.39934 −0.292640
227227 21.7630 1.44446 0.722231 0.691652i 0.243117π-0.243117\pi
0.722231 + 0.691652i 0.243117π0.243117\pi
228228 −5.22741 −0.346194
229229 16.9559 1.12048 0.560238 0.828331i 0.310709π-0.310709\pi
0.560238 + 0.828331i 0.310709π0.310709\pi
230230 8.39224 0.553368
231231 2.83520 0.186542
232232 11.8973 0.781096
233233 −9.83611 −0.644385 −0.322192 0.946674i 0.604420π-0.604420\pi
−0.322192 + 0.946674i 0.604420π0.604420\pi
234234 −4.38501 −0.286657
235235 −3.24803 −0.211878
236236 −1.41372 −0.0920250
237237 12.7191 0.826193
238238 −0.688748 −0.0446449
239239 0.590635 0.0382050 0.0191025 0.999818i 0.493919π-0.493919\pi
0.0191025 + 0.999818i 0.493919π0.493919\pi
240240 −4.59562 −0.296646
241241 15.3704 0.990097 0.495049 0.868865i 0.335150π-0.335150\pi
0.495049 + 0.868865i 0.335150π0.335150\pi
242242 −4.09445 −0.263201
243243 −16.1450 −1.03570
244244 −3.53256 −0.226149
245245 −23.7920 −1.52001
246246 0.470349 0.0299883
247247 11.0557 0.703459
248248 0 0
249249 12.7308 0.806783
250250 −9.57510 −0.605582
251251 −6.05150 −0.381967 −0.190984 0.981593i 0.561168π-0.561168\pi
−0.190984 + 0.981593i 0.561168π0.561168\pi
252252 2.54384 0.160247
253253 13.5114 0.849455
254254 0.987363 0.0619527
255255 −4.37788 −0.274154
256256 −9.92482 −0.620301
257257 −4.52784 −0.282439 −0.141219 0.989978i 0.545102π-0.545102\pi
−0.141219 + 0.989978i 0.545102π0.545102\pi
258258 −4.45301 −0.277232
259259 −7.94906 −0.493930
260260 16.4473 1.02002
261261 −10.7002 −0.662329
262262 −4.33891 −0.268059
263263 −2.50886 −0.154703 −0.0773516 0.997004i 0.524646π-0.524646\pi
−0.0773516 + 0.997004i 0.524646π0.524646\pi
264264 9.02557 0.555485
265265 13.2570 0.814370
266266 1.99991 0.122622
267267 4.00198 0.244917
268268 3.18168 0.194352
269269 13.3398 0.813340 0.406670 0.913575i 0.366690π-0.366690\pi
0.406670 + 0.913575i 0.366690π0.366690\pi
270270 −11.9624 −0.728007
271271 13.8242 0.839759 0.419879 0.907580i 0.362072π-0.362072\pi
0.419879 + 0.907580i 0.362072π0.362072\pi
272272 1.79739 0.108983
273273 2.00449 0.121317
274274 −8.79097 −0.531082
275275 −35.9939 −2.17051
276276 −4.51669 −0.271873
277277 11.5707 0.695219 0.347609 0.937639i 0.386994π-0.386994\pi
0.347609 + 0.937639i 0.386994π0.386994\pi
278278 −12.9030 −0.773870
279279 0 0
280280 6.87814 0.411048
281281 −15.3993 −0.918648 −0.459324 0.888269i 0.651908π-0.651908\pi
−0.459324 + 0.888269i 0.651908π0.651908\pi
282282 −0.545088 −0.0324595
283283 −22.6957 −1.34912 −0.674560 0.738220i 0.735667π-0.735667\pi
−0.674560 + 0.738220i 0.735667π0.735667\pi
284284 11.7944 0.699871
285285 12.7120 0.752994
286286 −8.25698 −0.488245
287287 0.577084 0.0340642
288288 12.6932 0.747955
289289 −15.2878 −0.899280
290290 −12.5147 −0.734890
291291 4.76255 0.279185
292292 8.62539 0.504763
293293 12.4009 0.724466 0.362233 0.932088i 0.382014π-0.382014\pi
0.362233 + 0.932088i 0.382014π0.382014\pi
294294 −3.99279 −0.232864
295295 3.43787 0.200160
296296 −25.3050 −1.47082
297297 −19.2593 −1.11754
298298 13.8831 0.804229
299299 9.55259 0.552441
300300 12.0323 0.694685
301301 −5.46353 −0.314912
302302 −10.5992 −0.609915
303303 −3.43583 −0.197383
304304 −5.21907 −0.299334
305305 8.59046 0.491888
306306 1.97195 0.112729
307307 30.7200 1.75328 0.876641 0.481145i 0.159779π-0.159779\pi
0.876641 + 0.481145i 0.159779π0.159779\pi
308308 4.79005 0.272938
309309 5.63612 0.320628
310310 0 0
311311 2.38141 0.135037 0.0675187 0.997718i 0.478492π-0.478492\pi
0.0675187 + 0.997718i 0.478492π0.478492\pi
312312 6.38109 0.361258
313313 10.7456 0.607377 0.303688 0.952771i 0.401782π-0.401782\pi
0.303688 + 0.952771i 0.401782π0.401782\pi
314314 −10.4439 −0.589385
315315 −6.18610 −0.348547
316316 21.4888 1.20884
317317 8.74635 0.491244 0.245622 0.969366i 0.421008π-0.421008\pi
0.245622 + 0.969366i 0.421008π0.421008\pi
318318 2.22480 0.124761
319319 −20.1486 −1.12810
320320 4.66033 0.260520
321321 −2.10023 −0.117224
322322 1.72800 0.0962977
323323 −4.97179 −0.276638
324324 −3.55869 −0.197705
325325 −25.4477 −1.41159
326326 0.720430 0.0399009
327327 −1.33269 −0.0736979
328328 1.83709 0.101436
329329 −0.668784 −0.0368713
330330 −9.49397 −0.522626
331331 −32.3691 −1.77917 −0.889583 0.456773i 0.849005π-0.849005\pi
−0.889583 + 0.456773i 0.849005π0.849005\pi
332332 21.5086 1.18044
333333 22.7589 1.24718
334334 7.78396 0.425919
335335 −7.73721 −0.422729
336336 −0.946258 −0.0516226
337337 27.7338 1.51076 0.755378 0.655289i 0.227453π-0.227453\pi
0.755378 + 0.655289i 0.227453π0.227453\pi
338338 3.12571 0.170016
339339 −5.75781 −0.312721
340340 −7.39640 −0.401126
341341 0 0
342342 −5.72593 −0.309623
343343 −10.2426 −0.553050
344344 −17.3926 −0.937745
345345 10.9837 0.591342
346346 14.2399 0.765540
347347 −25.9161 −1.39125 −0.695624 0.718407i 0.744872π-0.744872\pi
−0.695624 + 0.718407i 0.744872π0.744872\pi
348348 6.73541 0.361056
349349 5.59393 0.299436 0.149718 0.988729i 0.452163π-0.452163\pi
0.149718 + 0.988729i 0.452163π0.452163\pi
350350 −4.60333 −0.246058
351351 −13.6163 −0.726787
352352 23.9013 1.27394
353353 11.6690 0.621077 0.310538 0.950561i 0.399491π-0.399491\pi
0.310538 + 0.950561i 0.399491π0.399491\pi
354354 0.576946 0.0306643
355355 −28.6817 −1.52226
356356 6.76131 0.358349
357357 −0.901426 −0.0477085
358358 0.0907803 0.00479789
359359 26.1998 1.38278 0.691388 0.722484i 0.257000π-0.257000\pi
0.691388 + 0.722484i 0.257000π0.257000\pi
360360 −19.6928 −1.03790
361361 −4.56348 −0.240183
362362 −5.33115 −0.280199
363363 −5.35877 −0.281263
364364 3.38657 0.177505
365365 −20.9752 −1.09789
366366 1.44166 0.0753567
367367 27.0146 1.41015 0.705076 0.709132i 0.250913π-0.250913\pi
0.705076 + 0.709132i 0.250913π0.250913\pi
368368 −4.50948 −0.235073
369369 −1.65225 −0.0860127
370370 26.6183 1.38382
371371 2.72967 0.141717
372372 0 0
373373 −12.4058 −0.642351 −0.321175 0.947020i 0.604078π-0.604078\pi
−0.321175 + 0.947020i 0.604078π0.604078\pi
374374 3.71319 0.192004
375375 −12.5318 −0.647139
376376 −2.12900 −0.109795
377377 −14.2451 −0.733658
378378 −2.46311 −0.126688
379379 −4.63901 −0.238290 −0.119145 0.992877i 0.538015π-0.538015\pi
−0.119145 + 0.992877i 0.538015π0.538015\pi
380380 21.4768 1.10174
381381 1.29225 0.0662040
382382 14.5501 0.744450
383383 −5.02133 −0.256578 −0.128289 0.991737i 0.540949π-0.540949\pi
−0.128289 + 0.991737i 0.540949π0.540949\pi
384384 −9.69922 −0.494961
385385 −11.6484 −0.593659
386386 −3.90476 −0.198747
387387 15.6426 0.795159
388388 8.04629 0.408488
389389 18.6018 0.943151 0.471575 0.881826i 0.343686π-0.343686\pi
0.471575 + 0.881826i 0.343686π0.343686\pi
390390 −6.71225 −0.339888
391391 −4.29583 −0.217249
392392 −15.5951 −0.787670
393393 −5.67872 −0.286453
394394 −10.9731 −0.552819
395395 −52.2564 −2.62930
396396 −13.7144 −0.689174
397397 32.5588 1.63408 0.817040 0.576581i 0.195614π-0.195614\pi
0.817040 + 0.576581i 0.195614π0.195614\pi
398398 2.93824 0.147281
399399 2.61746 0.131037
400400 12.0131 0.600655
401401 −12.3903 −0.618740 −0.309370 0.950942i 0.600118π-0.600118\pi
−0.309370 + 0.950942i 0.600118π0.600118\pi
402402 −1.29847 −0.0647616
403403 0 0
404404 −5.80481 −0.288800
405405 8.65402 0.430022
406406 −2.57684 −0.127886
407407 42.8551 2.12425
408408 −2.86960 −0.142066
409409 −3.44808 −0.170497 −0.0852484 0.996360i 0.527168π-0.527168\pi
−0.0852484 + 0.996360i 0.527168π0.527168\pi
410410 −1.93243 −0.0954358
411411 −11.5055 −0.567526
412412 9.52218 0.469124
413413 0.707872 0.0348321
414414 −4.94744 −0.243153
415415 −52.3046 −2.56753
416416 16.8983 0.828506
417417 −16.8873 −0.826975
418418 −10.7819 −0.527361
419419 −40.0471 −1.95643 −0.978216 0.207592i 0.933437π-0.933437\pi
−0.978216 + 0.207592i 0.933437π0.933437\pi
420420 3.89392 0.190004
421421 21.6844 1.05683 0.528417 0.848985i 0.322786π-0.322786\pi
0.528417 + 0.848985i 0.322786π0.322786\pi
422422 7.93488 0.386264
423423 1.91479 0.0931005
424424 8.68963 0.422006
425425 11.4439 0.555112
426426 −4.81338 −0.233209
427427 1.76881 0.0855989
428428 −3.54833 −0.171515
429429 −10.8066 −0.521750
430430 18.2952 0.882273
431431 −11.6207 −0.559748 −0.279874 0.960037i 0.590293π-0.590293\pi
−0.279874 + 0.960037i 0.590293π0.590293\pi
432432 6.42786 0.309260
433433 24.5964 1.18203 0.591015 0.806661i 0.298728π-0.298728\pi
0.591015 + 0.806661i 0.298728π0.298728\pi
434434 0 0
435435 −16.3791 −0.785320
436436 −2.25157 −0.107831
437437 12.4737 0.596700
438438 −3.52008 −0.168196
439439 18.1932 0.868316 0.434158 0.900837i 0.357046π-0.357046\pi
0.434158 + 0.900837i 0.357046π0.357046\pi
440440 −37.0816 −1.76779
441441 14.0260 0.667903
442442 2.62523 0.124869
443443 17.7603 0.843819 0.421909 0.906638i 0.361360π-0.361360\pi
0.421909 + 0.906638i 0.361360π0.361360\pi
444444 −14.3259 −0.679878
445445 −16.4421 −0.779432
446446 −6.49772 −0.307676
447447 18.1701 0.859417
448448 0.959582 0.0453360
449449 −9.19857 −0.434107 −0.217054 0.976160i 0.569645π-0.569645\pi
−0.217054 + 0.976160i 0.569645π0.569645\pi
450450 13.1798 0.621301
451451 −3.11119 −0.146500
452452 −9.72778 −0.457556
453453 −13.8721 −0.651769
454454 −15.0054 −0.704241
455455 −8.23545 −0.386084
456456 8.33240 0.390200
457457 −31.1999 −1.45947 −0.729735 0.683730i 0.760356π-0.760356\pi
−0.729735 + 0.683730i 0.760356π0.760356\pi
458458 −11.6910 −0.546283
459459 6.12331 0.285812
460460 18.5568 0.865218
461461 −6.66847 −0.310582 −0.155291 0.987869i 0.549631π-0.549631\pi
−0.155291 + 0.987869i 0.549631π0.549631\pi
462462 −1.95485 −0.0909479
463463 35.3185 1.64139 0.820694 0.571368i 0.193587π-0.193587\pi
0.820694 + 0.571368i 0.193587π0.193587\pi
464464 6.72466 0.312184
465465 0 0
466466 6.78192 0.314167
467467 35.9434 1.66326 0.831632 0.555327i 0.187407π-0.187407\pi
0.831632 + 0.555327i 0.187407π0.187407\pi
468468 −9.69609 −0.448202
469469 −1.59312 −0.0735637
470470 2.23949 0.103300
471471 −13.6689 −0.629830
472472 2.25344 0.103723
473473 29.4551 1.35434
474474 −8.76972 −0.402806
475475 −33.2296 −1.52468
476476 −1.52295 −0.0698044
477477 −7.81532 −0.357839
478478 −0.407239 −0.0186267
479479 33.2444 1.51898 0.759488 0.650521i 0.225450π-0.225450\pi
0.759488 + 0.650521i 0.225450π0.225450\pi
480480 19.4298 0.886846
481481 30.2986 1.38150
482482 −10.5978 −0.482717
483483 2.26159 0.102906
484484 −9.05361 −0.411528
485485 −19.5669 −0.888489
486486 11.1319 0.504953
487487 28.5154 1.29215 0.646077 0.763272i 0.276408π-0.276408\pi
0.646077 + 0.763272i 0.276408π0.276408\pi
488488 5.63084 0.254896
489489 0.942891 0.0426390
490490 16.4044 0.741075
491491 −27.9636 −1.26198 −0.630991 0.775790i 0.717351π-0.717351\pi
−0.630991 + 0.775790i 0.717351π0.717351\pi
492492 1.04003 0.0468882
493493 6.40605 0.288514
494494 −7.62284 −0.342968
495495 33.3506 1.49900
496496 0 0
497497 −5.90568 −0.264906
498498 −8.77780 −0.393343
499499 −41.3050 −1.84906 −0.924532 0.381104i 0.875544π-0.875544\pi
−0.924532 + 0.381104i 0.875544π0.875544\pi
500500 −21.1724 −0.946857
501501 10.1876 0.455147
502502 4.17247 0.186226
503503 −25.5860 −1.14082 −0.570412 0.821358i 0.693217π-0.693217\pi
−0.570412 + 0.821358i 0.693217π0.693217\pi
504504 −4.05484 −0.180617
505505 14.1161 0.628159
506506 −9.31602 −0.414148
507507 4.09090 0.181683
508508 2.18325 0.0968660
509509 −24.4678 −1.08452 −0.542258 0.840212i 0.682430π-0.682430\pi
−0.542258 + 0.840212i 0.682430π0.682430\pi
510510 3.01852 0.133662
511511 −4.31888 −0.191056
512512 −14.6534 −0.647594
513513 −17.7802 −0.785014
514514 3.12191 0.137702
515515 −23.1560 −1.02038
516516 −9.84645 −0.433466
517517 3.60556 0.158572
518518 5.48082 0.240813
519519 18.6370 0.818073
520520 −26.2167 −1.14968
521521 14.9656 0.655654 0.327827 0.944738i 0.393684π-0.393684\pi
0.327827 + 0.944738i 0.393684π0.393684\pi
522522 7.37774 0.322915
523523 −20.9656 −0.916763 −0.458381 0.888756i 0.651571π-0.651571\pi
−0.458381 + 0.888756i 0.651571π0.651571\pi
524524 −9.59415 −0.419123
525525 −6.02479 −0.262943
526526 1.72984 0.0754247
527527 0 0
528528 5.10148 0.222014
529529 −12.2222 −0.531399
530530 −9.14059 −0.397042
531531 −2.02671 −0.0879517
532532 4.42217 0.191726
533533 −2.19961 −0.0952759
534534 −2.75933 −0.119408
535535 8.62882 0.373056
536536 −5.07155 −0.219058
537537 0.118812 0.00512713
538538 −9.19768 −0.396540
539539 26.4109 1.13760
540540 −26.4511 −1.13827
541541 1.73130 0.0744345 0.0372172 0.999307i 0.488151π-0.488151\pi
0.0372172 + 0.999307i 0.488151π0.488151\pi
542542 −9.53167 −0.409420
543543 −6.97735 −0.299427
544544 −7.59920 −0.325813
545545 5.47536 0.234539
546546 −1.38208 −0.0591476
547547 −13.1214 −0.561032 −0.280516 0.959849i 0.590506π-0.590506\pi
−0.280516 + 0.959849i 0.590506π0.590506\pi
548548 −19.4385 −0.830372
549549 −5.06429 −0.216139
550550 24.8175 1.05822
551551 −18.6012 −0.792436
552552 7.19953 0.306432
553553 −10.7598 −0.457554
554554 −7.97795 −0.338950
555555 34.8377 1.47878
556556 −28.5310 −1.20998
557557 −28.0246 −1.18744 −0.593721 0.804671i 0.702342π-0.702342\pi
−0.593721 + 0.804671i 0.702342π0.702342\pi
558558 0 0
559559 20.8248 0.880794
560560 3.88770 0.164286
561561 4.85978 0.205180
562562 10.6177 0.447882
563563 22.6519 0.954662 0.477331 0.878723i 0.341604π-0.341604\pi
0.477331 + 0.878723i 0.341604π0.341604\pi
564564 −1.20529 −0.0507520
565565 23.6560 0.995215
566566 15.6485 0.657757
567567 1.78190 0.0748328
568568 −18.8001 −0.788836
569569 −46.4420 −1.94695 −0.973475 0.228792i 0.926522π-0.926522\pi
−0.973475 + 0.228792i 0.926522π0.926522\pi
570570 −8.76483 −0.367118
571571 −12.4984 −0.523040 −0.261520 0.965198i 0.584224π-0.584224\pi
−0.261520 + 0.965198i 0.584224π0.584224\pi
572572 −18.2577 −0.763395
573573 19.0431 0.795536
574574 −0.397896 −0.0166078
575575 −28.7117 −1.19736
576576 −2.74738 −0.114474
577577 −30.4843 −1.26908 −0.634539 0.772891i 0.718810π-0.718810\pi
−0.634539 + 0.772891i 0.718810π0.718810\pi
578578 10.5408 0.438440
579579 −5.11051 −0.212385
580580 −27.6725 −1.14904
581581 −10.7697 −0.446804
582582 −3.28374 −0.136115
583583 −14.7162 −0.609485
584584 −13.7487 −0.568926
585585 23.5789 0.974869
586586 −8.55030 −0.353210
587587 33.6581 1.38922 0.694609 0.719387i 0.255577π-0.255577\pi
0.694609 + 0.719387i 0.255577π0.255577\pi
588588 −8.82883 −0.364095
589589 0 0
590590 −2.37039 −0.0975872
591591 −14.3615 −0.590754
592592 −14.3030 −0.587851
593593 −44.8879 −1.84333 −0.921663 0.387992i 0.873169π-0.873169\pi
−0.921663 + 0.387992i 0.873169π0.873169\pi
594594 13.2791 0.544850
595595 3.70351 0.151829
596596 30.6983 1.25745
597597 3.84554 0.157387
598598 −6.58644 −0.269340
599599 −19.5846 −0.800206 −0.400103 0.916470i 0.631026π-0.631026\pi
−0.400103 + 0.916470i 0.631026π0.631026\pi
600600 −19.1793 −0.782991
601601 30.4595 1.24247 0.621234 0.783625i 0.286632π-0.286632\pi
0.621234 + 0.783625i 0.286632π0.286632\pi
602602 3.76706 0.153534
603603 4.56127 0.185749
604604 −23.4368 −0.953632
605605 22.0165 0.895099
606606 2.36898 0.0962332
607607 −13.3746 −0.542857 −0.271428 0.962459i 0.587496π-0.587496\pi
−0.271428 + 0.962459i 0.587496π0.587496\pi
608608 22.0657 0.894882
609609 −3.37254 −0.136662
610610 −5.92306 −0.239818
611611 2.54914 0.103127
612612 4.36036 0.176257
613613 −5.19521 −0.209832 −0.104916 0.994481i 0.533457π-0.533457\pi
−0.104916 + 0.994481i 0.533457π0.533457\pi
614614 −21.1812 −0.854804
615615 −2.52914 −0.101985
616616 −7.63526 −0.307633
617617 −30.0131 −1.20828 −0.604140 0.796878i 0.706483π-0.706483\pi
−0.604140 + 0.796878i 0.706483π0.706483\pi
618618 −3.88606 −0.156320
619619 18.3260 0.736584 0.368292 0.929710i 0.379943π-0.379943\pi
0.368292 + 0.929710i 0.379943π0.379943\pi
620620 0 0
621621 −15.3628 −0.616487
622622 −1.64197 −0.0658369
623623 −3.38551 −0.135638
624624 3.60676 0.144386
625625 7.75849 0.310339
626626 −7.40901 −0.296123
627627 −14.1113 −0.563550
628628 −23.0935 −0.921532
629629 −13.6254 −0.543279
630630 4.26527 0.169932
631631 10.3352 0.411438 0.205719 0.978611i 0.434047π-0.434047\pi
0.205719 + 0.978611i 0.434047π0.434047\pi
632632 −34.2528 −1.36250
633633 10.3851 0.412770
634634 −6.03054 −0.239503
635635 −5.30922 −0.210690
636636 4.91945 0.195069
637637 18.6725 0.739833
638638 13.8923 0.550001
639639 16.9085 0.668892
640640 39.8493 1.57518
641641 0.101252 0.00399921 0.00199961 0.999998i 0.499364π-0.499364\pi
0.00199961 + 0.999998i 0.499364π0.499364\pi
642642 1.44810 0.0571518
643643 −13.7118 −0.540742 −0.270371 0.962756i 0.587146π-0.587146\pi
−0.270371 + 0.962756i 0.587146π0.587146\pi
644644 3.82094 0.150566
645645 23.9446 0.942816
646646 3.42801 0.134873
647647 −10.8344 −0.425943 −0.212971 0.977058i 0.568314π-0.568314\pi
−0.212971 + 0.977058i 0.568314π0.568314\pi
648648 5.67250 0.222837
649649 −3.81629 −0.149803
650650 17.5460 0.688212
651651 0 0
652652 1.59301 0.0623870
653653 −24.2522 −0.949061 −0.474531 0.880239i 0.657382π-0.657382\pi
−0.474531 + 0.880239i 0.657382π0.657382\pi
654654 0.918880 0.0359310
655655 23.3310 0.911619
656656 1.03837 0.0405415
657657 12.3654 0.482420
658658 0.461122 0.0179764
659659 −8.53349 −0.332418 −0.166209 0.986091i 0.553153π-0.553153\pi
−0.166209 + 0.986091i 0.553153π0.553153\pi
660660 −20.9930 −0.817150
661661 37.8842 1.47352 0.736762 0.676152i 0.236354π-0.236354\pi
0.736762 + 0.676152i 0.236354π0.236354\pi
662662 22.3183 0.867424
663663 3.43587 0.133438
664664 −34.2844 −1.33049
665665 −10.7538 −0.417015
666666 −15.6921 −0.608057
667667 −16.0722 −0.622316
668668 17.2118 0.665945
669669 −8.50414 −0.328789
670670 5.33475 0.206099
671671 −9.53606 −0.368136
672672 4.00069 0.154330
673673 7.12011 0.274460 0.137230 0.990539i 0.456180π-0.456180\pi
0.137230 + 0.990539i 0.456180π0.456180\pi
674674 −19.1223 −0.736562
675675 40.9259 1.57524
676676 6.91154 0.265829
677677 48.0610 1.84713 0.923567 0.383438i 0.125260π-0.125260\pi
0.923567 + 0.383438i 0.125260π0.125260\pi
678678 3.96997 0.152466
679679 −4.02892 −0.154616
680680 11.7897 0.452116
681681 −19.6390 −0.752567
682682 0 0
683683 32.5731 1.24638 0.623188 0.782072i 0.285837π-0.285837\pi
0.623188 + 0.782072i 0.285837π0.285837\pi
684684 −12.6611 −0.484110
685685 47.2705 1.80611
686686 7.06222 0.269637
687687 −15.3010 −0.583770
688688 −9.83073 −0.374793
689689 −10.4044 −0.396376
690690 −7.57317 −0.288306
691691 27.2531 1.03676 0.518378 0.855152i 0.326536π-0.326536\pi
0.518378 + 0.855152i 0.326536π0.326536\pi
692692 31.4871 1.19696
693693 6.86704 0.260857
694694 17.8689 0.678296
695695 69.3815 2.63179
696696 −10.7361 −0.406952
697697 0.989173 0.0374676
698698 −3.85698 −0.145989
699699 8.87611 0.335725
700700 −10.1788 −0.384724
701701 8.48915 0.320631 0.160315 0.987066i 0.448749π-0.448749\pi
0.160315 + 0.987066i 0.448749π0.448749\pi
702702 9.38837 0.354341
703703 39.5638 1.49218
704704 −5.17332 −0.194977
705705 2.93103 0.110389
706706 −8.04567 −0.302803
707707 2.90657 0.109313
708708 1.27574 0.0479452
709709 −23.3861 −0.878283 −0.439142 0.898418i 0.644717π-0.644717\pi
−0.439142 + 0.898418i 0.644717π0.644717\pi
710710 19.7758 0.742172
711711 30.8064 1.15533
712712 −10.7774 −0.403901
713713 0 0
714714 0.621526 0.0232600
715715 44.3991 1.66043
716716 0.200732 0.00750172
717717 −0.532990 −0.0199049
718718 −18.0646 −0.674165
719719 12.9769 0.483956 0.241978 0.970282i 0.422204π-0.422204\pi
0.241978 + 0.970282i 0.422204π0.422204\pi
720720 −11.1309 −0.414824
721721 −4.76792 −0.177567
722722 3.14649 0.117100
723723 −13.8703 −0.515842
724724 −11.7882 −0.438104
725725 42.8156 1.59013
726726 3.69483 0.137128
727727 −12.4230 −0.460744 −0.230372 0.973103i 0.573994π-0.573994\pi
−0.230372 + 0.973103i 0.573994π0.573994\pi
728728 −5.39814 −0.200068
729729 7.56675 0.280250
730730 14.4622 0.535272
731731 −9.36496 −0.346376
732732 3.18778 0.117824
733733 −34.1573 −1.26163 −0.630815 0.775933i 0.717279π-0.717279\pi
−0.630815 + 0.775933i 0.717279π0.717279\pi
734734 −18.6264 −0.687512
735735 21.4699 0.791929
736736 19.0657 0.702769
737737 8.58888 0.316376
738738 1.13921 0.0419351
739739 −12.3749 −0.455219 −0.227610 0.973752i 0.573091π-0.573091\pi
−0.227610 + 0.973752i 0.573091π0.573091\pi
740740 58.8580 2.16366
741741 −9.97669 −0.366503
742742 −1.88209 −0.0690936
743743 −16.2455 −0.595990 −0.297995 0.954567i 0.596318π-0.596318\pi
−0.297995 + 0.954567i 0.596318π0.596318\pi
744744 0 0
745745 −74.6520 −2.73504
746746 8.55374 0.313175
747747 30.8348 1.12819
748748 8.21057 0.300208
749749 1.77671 0.0649196
750750 8.64058 0.315509
751751 −10.7883 −0.393670 −0.196835 0.980437i 0.563066π-0.563066\pi
−0.196835 + 0.980437i 0.563066π0.563066\pi
752752 −1.20337 −0.0438823
753753 5.46088 0.199006
754754 9.82187 0.357691
755755 56.9936 2.07421
756756 −5.44640 −0.198083
757757 41.1017 1.49387 0.746933 0.664900i 0.231526π-0.231526\pi
0.746933 + 0.664900i 0.231526π0.231526\pi
758758 3.19857 0.116177
759759 −12.1927 −0.442568
760760 −34.2337 −1.24179
761761 19.6605 0.712693 0.356347 0.934354i 0.384022π-0.384022\pi
0.356347 + 0.934354i 0.384022π0.384022\pi
762762 −0.890998 −0.0322774
763763 1.12740 0.0408146
764764 32.1731 1.16398
765765 −10.6035 −0.383371
766766 3.46217 0.125093
767767 −2.69812 −0.0974236
768768 8.95617 0.323178
769769 3.78834 0.136611 0.0683055 0.997664i 0.478241π-0.478241\pi
0.0683055 + 0.997664i 0.478241π0.478241\pi
770770 8.03151 0.289435
771771 4.08593 0.147151
772772 −8.63417 −0.310750
773773 −25.3696 −0.912480 −0.456240 0.889857i 0.650804π-0.650804\pi
−0.456240 + 0.889857i 0.650804π0.650804\pi
774774 −10.7855 −0.387676
775775 0 0
776776 −12.8256 −0.460414
777777 7.17323 0.257338
778778 −12.8258 −0.459828
779779 −2.87225 −0.102909
780780 −14.8421 −0.531431
781781 31.8388 1.13928
782782 2.96194 0.105919
783783 22.9094 0.818714
784784 −8.81473 −0.314812
785785 56.1588 2.00439
786786 3.91543 0.139659
787787 −25.9466 −0.924896 −0.462448 0.886646i 0.653029π-0.653029\pi
−0.462448 + 0.886646i 0.653029π0.653029\pi
788788 −24.2637 −0.864359
789789 2.26400 0.0806006
790790 36.0304 1.28190
791791 4.87087 0.173188
792792 21.8605 0.776779
793793 −6.74201 −0.239416
794794 −22.4491 −0.796687
795795 −11.9631 −0.424288
796796 6.49701 0.230280
797797 −18.5026 −0.655396 −0.327698 0.944782i 0.606273π-0.606273\pi
−0.327698 + 0.944782i 0.606273π0.606273\pi
798798 −1.80472 −0.0638863
799799 −1.14635 −0.0405551
800800 −50.7902 −1.79570
801801 9.69305 0.342487
802802 8.54300 0.301664
803803 23.2840 0.821676
804804 −2.87115 −0.101258
805805 −9.29174 −0.327491
806806 0 0
807807 −12.0378 −0.423751
808808 9.25276 0.325511
809809 36.7478 1.29199 0.645993 0.763344i 0.276444π-0.276444\pi
0.645993 + 0.763344i 0.276444π0.276444\pi
810810 −5.96688 −0.209655
811811 −39.4301 −1.38458 −0.692289 0.721620i 0.743398π-0.743398\pi
−0.692289 + 0.721620i 0.743398π0.743398\pi
812812 −5.69788 −0.199956
813813 −12.4749 −0.437515
814814 −29.5483 −1.03567
815815 −3.87387 −0.135696
816816 −1.62197 −0.0567803
817817 27.1929 0.951359
818818 2.37743 0.0831248
819819 4.85500 0.169648
820820 −4.27297 −0.149218
821821 1.48058 0.0516727 0.0258363 0.999666i 0.491775π-0.491775\pi
0.0258363 + 0.999666i 0.491775π0.491775\pi
822822 7.93298 0.276694
823823 −38.8652 −1.35476 −0.677378 0.735635i 0.736884π-0.736884\pi
−0.677378 + 0.735635i 0.736884π0.736884\pi
824824 −15.1782 −0.528758
825825 32.4809 1.13084
826826 −0.488073 −0.0169822
827827 33.9363 1.18008 0.590040 0.807374i 0.299112π-0.299112\pi
0.590040 + 0.807374i 0.299112π0.299112\pi
828828 −10.9397 −0.380182
829829 16.5307 0.574135 0.287067 0.957910i 0.407320π-0.407320\pi
0.287067 + 0.957910i 0.407320π0.407320\pi
830830 36.0636 1.25179
831831 −10.4415 −0.362210
832832 −3.65754 −0.126802
833833 −8.39710 −0.290942
834834 11.6437 0.403187
835835 −41.8556 −1.44847
836836 −23.8409 −0.824555
837837 0 0
838838 27.6122 0.953848
839839 −54.0781 −1.86698 −0.933491 0.358600i 0.883254π-0.883254\pi
−0.933491 + 0.358600i 0.883254π0.883254\pi
840840 −6.20684 −0.214156
841841 −5.03279 −0.173545
842842 −14.9512 −0.515254
843843 13.8964 0.478617
844844 17.5455 0.603942
845845 −16.8075 −0.578194
846846 −1.32024 −0.0453907
847847 4.53330 0.155766
848848 4.91160 0.168665
849849 20.4806 0.702894
850850 −7.89051 −0.270642
851851 34.1847 1.17184
852852 −10.6433 −0.364634
853853 39.5762 1.35506 0.677532 0.735493i 0.263050π-0.263050\pi
0.677532 + 0.735493i 0.263050π0.263050\pi
854854 −1.21958 −0.0417333
855855 30.7893 1.05297
856856 5.65598 0.193317
857857 12.7250 0.434679 0.217340 0.976096i 0.430262π-0.430262\pi
0.217340 + 0.976096i 0.430262π0.430262\pi
858858 7.45110 0.254376
859859 −21.1543 −0.721777 −0.360888 0.932609i 0.617526π-0.617526\pi
−0.360888 + 0.932609i 0.617526π0.617526\pi
860860 40.4542 1.37948
861861 −0.520762 −0.0177475
862862 8.01237 0.272902
863863 9.33974 0.317928 0.158964 0.987284i 0.449185π-0.449185\pi
0.158964 + 0.987284i 0.449185π0.449185\pi
864864 −27.1763 −0.924558
865865 −76.5702 −2.60346
866866 −16.9591 −0.576292
867867 13.7957 0.468526
868868 0 0
869869 58.0085 1.96780
870870 11.2933 0.382879
871871 6.07235 0.205754
872872 3.58896 0.121538
873873 11.5352 0.390407
874874 −8.60055 −0.290918
875875 10.6014 0.358392
876876 −7.78356 −0.262982
877877 22.4353 0.757585 0.378792 0.925482i 0.376339π-0.376339\pi
0.378792 + 0.925482i 0.376339π0.376339\pi
878878 −12.5441 −0.423343
879879 −11.1905 −0.377448
880880 −20.9595 −0.706543
881881 −46.4315 −1.56432 −0.782158 0.623080i 0.785881π-0.785881\pi
−0.782158 + 0.623080i 0.785881π0.785881\pi
882882 −9.67080 −0.325633
883883 36.5396 1.22965 0.614827 0.788662i 0.289226π-0.289226\pi
0.614827 + 0.788662i 0.289226π0.289226\pi
884884 5.80488 0.195239
885885 −3.10234 −0.104284
886886 −12.2456 −0.411400
887887 28.6850 0.963150 0.481575 0.876405i 0.340065π-0.340065\pi
0.481575 + 0.876405i 0.340065π0.340065\pi
888888 22.8353 0.766301
889889 −1.09319 −0.0366644
890890 11.3367 0.380008
891891 −9.60662 −0.321834
892892 −14.3677 −0.481066
893893 3.32865 0.111389
894894 −12.5282 −0.419005
895895 −0.488140 −0.0163167
896896 8.20514 0.274114
897897 −8.62027 −0.287822
898898 6.34235 0.211647
899899 0 0
900900 29.1430 0.971434
901901 4.67889 0.155877
902902 2.14514 0.0714254
903903 4.93029 0.164070
904904 15.5059 0.515719
905905 28.6665 0.952906
906906 9.56473 0.317767
907907 −22.1896 −0.736794 −0.368397 0.929669i 0.620093π-0.620093\pi
−0.368397 + 0.929669i 0.620093π0.620093\pi
908908 −33.1799 −1.10111
909909 −8.32179 −0.276017
910910 5.67829 0.188233
911911 −28.8324 −0.955261 −0.477631 0.878561i 0.658504π-0.658504\pi
−0.477631 + 0.878561i 0.658504π0.658504\pi
912912 4.70969 0.155953
913913 58.0620 1.92157
914914 21.5121 0.711557
915915 −7.75204 −0.256275
916916 −25.8510 −0.854139
917917 4.80396 0.158641
918918 −4.22198 −0.139346
919919 48.0623 1.58543 0.792715 0.609592i 0.208667π-0.208667\pi
0.792715 + 0.609592i 0.208667π0.208667\pi
920920 −29.5793 −0.975201
921921 −27.7217 −0.913463
922922 4.59786 0.151423
923923 22.5101 0.740928
924924 −4.32255 −0.142201
925925 −91.0668 −2.99426
926926 −24.3518 −0.800251
927927 13.6510 0.448359
928928 −28.4312 −0.933300
929929 7.01617 0.230193 0.115097 0.993354i 0.463282π-0.463282\pi
0.115097 + 0.993354i 0.463282π0.463282\pi
930930 0 0
931931 24.3825 0.799105
932932 14.9961 0.491214
933933 −2.14899 −0.0703547
934934 −24.7827 −0.810916
935935 −19.9664 −0.652972
936936 15.4554 0.505176
937937 −12.8807 −0.420793 −0.210396 0.977616i 0.567475π-0.567475\pi
−0.210396 + 0.977616i 0.567475π0.567475\pi
938938 1.09845 0.0358656
939939 −9.69683 −0.316444
940940 4.95195 0.161515
941941 −50.0392 −1.63123 −0.815616 0.578593i 0.803602π-0.803602\pi
−0.815616 + 0.578593i 0.803602π0.803602\pi
942942 9.42462 0.307071
943943 −2.48174 −0.0808165
944944 1.27370 0.0414555
945945 13.2445 0.430844
946946 −20.3090 −0.660304
947947 51.8679 1.68548 0.842741 0.538320i 0.180941π-0.180941\pi
0.842741 + 0.538320i 0.180941π0.180941\pi
948948 −19.3915 −0.629807
949949 16.4619 0.534374
950950 22.9115 0.743349
951951 −7.89271 −0.255939
952952 2.42756 0.0786777
953953 18.7352 0.606893 0.303447 0.952848i 0.401863π-0.401863\pi
0.303447 + 0.952848i 0.401863π0.401863\pi
954954 5.38861 0.174463
955955 −78.2385 −2.53174
956956 −0.900482 −0.0291237
957957 18.1821 0.587743
958958 −22.9218 −0.740569
959959 9.73320 0.314301
960960 −4.20549 −0.135731
961961 0 0
962962 −20.8907 −0.673542
963963 −5.08690 −0.163923
964964 −23.4338 −0.754751
965965 20.9965 0.675902
966966 −1.55935 −0.0501712
967967 −47.7846 −1.53665 −0.768324 0.640061i 0.778909π-0.778909\pi
−0.768324 + 0.640061i 0.778909π0.778909\pi
968968 14.4313 0.463839
969969 4.48655 0.144129
970970 13.4913 0.433178
971971 −31.1007 −0.998068 −0.499034 0.866583i 0.666312π-0.666312\pi
−0.499034 + 0.866583i 0.666312π0.666312\pi
972972 24.6147 0.789517
973973 14.2860 0.457987
974974 −19.6611 −0.629983
975975 22.9641 0.735439
976976 3.18269 0.101876
977977 −22.0791 −0.706375 −0.353187 0.935553i 0.614902π-0.614902\pi
−0.353187 + 0.935553i 0.614902π0.614902\pi
978978 −0.650117 −0.0207884
979979 18.2520 0.583337
980980 36.2733 1.15871
981981 −3.22786 −0.103058
982982 19.2807 0.615273
983983 −37.5769 −1.19852 −0.599258 0.800556i 0.704538π-0.704538\pi
−0.599258 + 0.800556i 0.704538π0.704538\pi
984984 −1.65779 −0.0528484
985985 59.0044 1.88004
986986 −4.41693 −0.140664
987987 0.603511 0.0192100
988988 −16.8555 −0.536246
989989 23.4958 0.747122
990990 −22.9950 −0.730829
991991 −6.77397 −0.215182 −0.107591 0.994195i 0.534314π-0.534314\pi
−0.107591 + 0.994195i 0.534314π0.534314\pi
992992 0 0
993993 29.2099 0.926948
994994 4.07192 0.129154
995995 −15.7994 −0.500875
996996 −19.4094 −0.615010
997997 −29.5733 −0.936595 −0.468298 0.883571i 0.655132π-0.655132\pi
−0.468298 + 0.883571i 0.655132π0.655132\pi
998998 28.4795 0.901502
999999 −48.7272 −1.54166
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.a.i.1.3 8
3.2 odd 2 8649.2.a.bf.1.6 8
31.2 even 5 961.2.d.p.531.1 16
31.3 odd 30 961.2.g.m.846.1 16
31.4 even 5 961.2.d.o.388.4 16
31.5 even 3 961.2.c.j.521.3 16
31.6 odd 6 961.2.c.i.439.3 16
31.7 even 15 31.2.g.a.18.2 16
31.8 even 5 961.2.d.o.374.4 16
31.9 even 15 31.2.g.a.19.2 yes 16
31.10 even 15 961.2.g.s.844.1 16
31.11 odd 30 961.2.g.j.338.2 16
31.12 odd 30 961.2.g.n.547.1 16
31.13 odd 30 961.2.g.n.448.1 16
31.14 even 15 961.2.g.k.816.2 16
31.15 odd 10 961.2.d.q.628.1 16
31.16 even 5 961.2.d.p.628.1 16
31.17 odd 30 961.2.g.j.816.2 16
31.18 even 15 961.2.g.t.448.1 16
31.19 even 15 961.2.g.t.547.1 16
31.20 even 15 961.2.g.k.338.2 16
31.21 odd 30 961.2.g.m.844.1 16
31.22 odd 30 961.2.g.l.732.2 16
31.23 odd 10 961.2.d.n.374.4 16
31.24 odd 30 961.2.g.l.235.2 16
31.25 even 3 961.2.c.j.439.3 16
31.26 odd 6 961.2.c.i.521.3 16
31.27 odd 10 961.2.d.n.388.4 16
31.28 even 15 961.2.g.s.846.1 16
31.29 odd 10 961.2.d.q.531.1 16
31.30 odd 2 961.2.a.j.1.3 8
93.38 odd 30 279.2.y.c.235.1 16
93.71 odd 30 279.2.y.c.19.1 16
93.92 even 2 8649.2.a.be.1.6 8
124.7 odd 30 496.2.bg.c.49.1 16
124.71 odd 30 496.2.bg.c.81.1 16
155.7 odd 60 775.2.ck.a.49.3 32
155.9 even 30 775.2.bl.a.701.1 16
155.38 odd 60 775.2.ck.a.49.2 32
155.69 even 30 775.2.bl.a.576.1 16
155.102 odd 60 775.2.ck.a.174.2 32
155.133 odd 60 775.2.ck.a.174.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.18.2 16 31.7 even 15
31.2.g.a.19.2 yes 16 31.9 even 15
279.2.y.c.19.1 16 93.71 odd 30
279.2.y.c.235.1 16 93.38 odd 30
496.2.bg.c.49.1 16 124.7 odd 30
496.2.bg.c.81.1 16 124.71 odd 30
775.2.bl.a.576.1 16 155.69 even 30
775.2.bl.a.701.1 16 155.9 even 30
775.2.ck.a.49.2 32 155.38 odd 60
775.2.ck.a.49.3 32 155.7 odd 60
775.2.ck.a.174.2 32 155.102 odd 60
775.2.ck.a.174.3 32 155.133 odd 60
961.2.a.i.1.3 8 1.1 even 1 trivial
961.2.a.j.1.3 8 31.30 odd 2
961.2.c.i.439.3 16 31.6 odd 6
961.2.c.i.521.3 16 31.26 odd 6
961.2.c.j.439.3 16 31.25 even 3
961.2.c.j.521.3 16 31.5 even 3
961.2.d.n.374.4 16 31.23 odd 10
961.2.d.n.388.4 16 31.27 odd 10
961.2.d.o.374.4 16 31.8 even 5
961.2.d.o.388.4 16 31.4 even 5
961.2.d.p.531.1 16 31.2 even 5
961.2.d.p.628.1 16 31.16 even 5
961.2.d.q.531.1 16 31.29 odd 10
961.2.d.q.628.1 16 31.15 odd 10
961.2.g.j.338.2 16 31.11 odd 30
961.2.g.j.816.2 16 31.17 odd 30
961.2.g.k.338.2 16 31.20 even 15
961.2.g.k.816.2 16 31.14 even 15
961.2.g.l.235.2 16 31.24 odd 30
961.2.g.l.732.2 16 31.22 odd 30
961.2.g.m.844.1 16 31.21 odd 30
961.2.g.m.846.1 16 31.3 odd 30
961.2.g.n.448.1 16 31.13 odd 30
961.2.g.n.547.1 16 31.12 odd 30
961.2.g.s.844.1 16 31.10 even 15
961.2.g.s.846.1 16 31.28 even 15
961.2.g.t.448.1 16 31.18 even 15
961.2.g.t.547.1 16 31.19 even 15
8649.2.a.be.1.6 8 93.92 even 2
8649.2.a.bf.1.6 8 3.2 odd 2