Properties

Label 961.2.a.i.1.3
Level $961$
Weight $2$
Character 961.1
Self dual yes
Analytic conductor $7.674$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(1,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.67362363425\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.2051578125.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 9x^{6} + 19x^{5} + 14x^{4} - 28x^{3} - 11x^{2} + 6x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.73366\) of defining polynomial
Character \(\chi\) \(=\) 961.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.689493 q^{2} -0.902401 q^{3} -1.52460 q^{4} +3.70752 q^{5} +0.622199 q^{6} +0.763394 q^{7} +2.43019 q^{8} -2.18567 q^{9} -2.55631 q^{10} -4.11562 q^{11} +1.37580 q^{12} -2.90975 q^{13} -0.526355 q^{14} -3.34567 q^{15} +1.37360 q^{16} +1.30852 q^{17} +1.50701 q^{18} -3.79954 q^{19} -5.65248 q^{20} -0.688887 q^{21} +2.83769 q^{22} -3.28296 q^{23} -2.19300 q^{24} +8.74568 q^{25} +2.00625 q^{26} +4.67956 q^{27} -1.16387 q^{28} +4.89563 q^{29} +2.30681 q^{30} -5.80746 q^{32} +3.71394 q^{33} -0.902218 q^{34} +2.83030 q^{35} +3.33228 q^{36} -10.4128 q^{37} +2.61976 q^{38} +2.62576 q^{39} +9.00995 q^{40} +0.755946 q^{41} +0.474983 q^{42} -7.15689 q^{43} +6.27468 q^{44} -8.10342 q^{45} +2.26358 q^{46} -0.876067 q^{47} -1.23954 q^{48} -6.41723 q^{49} -6.03008 q^{50} -1.18081 q^{51} +4.43621 q^{52} +3.57570 q^{53} -3.22652 q^{54} -15.2587 q^{55} +1.85519 q^{56} +3.42871 q^{57} -3.37550 q^{58} +0.927270 q^{59} +5.10080 q^{60} +2.31704 q^{61} -1.66853 q^{63} +1.25699 q^{64} -10.7879 q^{65} -2.56074 q^{66} -2.08690 q^{67} -1.99498 q^{68} +2.96254 q^{69} -1.95147 q^{70} -7.73608 q^{71} -5.31159 q^{72} -5.65748 q^{73} +7.17954 q^{74} -7.89211 q^{75} +5.79278 q^{76} -3.14184 q^{77} -1.81044 q^{78} -14.0947 q^{79} +5.09266 q^{80} +2.33418 q^{81} -0.521219 q^{82} -14.1077 q^{83} +1.05028 q^{84} +4.85137 q^{85} +4.93462 q^{86} -4.41782 q^{87} -10.0017 q^{88} -4.43481 q^{89} +5.58725 q^{90} -2.22129 q^{91} +5.00520 q^{92} +0.604042 q^{94} -14.0869 q^{95} +5.24066 q^{96} -5.27764 q^{97} +4.42463 q^{98} +8.99540 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 3 q^{3} + 8 q^{4} + 3 q^{5} - 11 q^{6} - 2 q^{7} - 9 q^{8} + 5 q^{9} - 13 q^{10} - 18 q^{11} - 8 q^{13} - 9 q^{14} - 18 q^{15} + 4 q^{16} - 14 q^{17} + 23 q^{18} - 6 q^{19} - 7 q^{20} + q^{21}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.689493 −0.487545 −0.243772 0.969832i \(-0.578385\pi\)
−0.243772 + 0.969832i \(0.578385\pi\)
\(3\) −0.902401 −0.521001 −0.260501 0.965474i \(-0.583888\pi\)
−0.260501 + 0.965474i \(0.583888\pi\)
\(4\) −1.52460 −0.762300
\(5\) 3.70752 1.65805 0.829026 0.559210i \(-0.188896\pi\)
0.829026 + 0.559210i \(0.188896\pi\)
\(6\) 0.622199 0.254012
\(7\) 0.763394 0.288536 0.144268 0.989539i \(-0.453917\pi\)
0.144268 + 0.989539i \(0.453917\pi\)
\(8\) 2.43019 0.859200
\(9\) −2.18567 −0.728558
\(10\) −2.55631 −0.808375
\(11\) −4.11562 −1.24091 −0.620453 0.784243i \(-0.713051\pi\)
−0.620453 + 0.784243i \(0.713051\pi\)
\(12\) 1.37580 0.397159
\(13\) −2.90975 −0.807020 −0.403510 0.914975i \(-0.632210\pi\)
−0.403510 + 0.914975i \(0.632210\pi\)
\(14\) −0.526355 −0.140674
\(15\) −3.34567 −0.863847
\(16\) 1.37360 0.343401
\(17\) 1.30852 0.317364 0.158682 0.987330i \(-0.449276\pi\)
0.158682 + 0.987330i \(0.449276\pi\)
\(18\) 1.50701 0.355205
\(19\) −3.79954 −0.871675 −0.435837 0.900025i \(-0.643548\pi\)
−0.435837 + 0.900025i \(0.643548\pi\)
\(20\) −5.65248 −1.26393
\(21\) −0.688887 −0.150328
\(22\) 2.83769 0.604998
\(23\) −3.28296 −0.684544 −0.342272 0.939601i \(-0.611196\pi\)
−0.342272 + 0.939601i \(0.611196\pi\)
\(24\) −2.19300 −0.447645
\(25\) 8.74568 1.74914
\(26\) 2.00625 0.393458
\(27\) 4.67956 0.900581
\(28\) −1.16387 −0.219951
\(29\) 4.89563 0.909096 0.454548 0.890722i \(-0.349801\pi\)
0.454548 + 0.890722i \(0.349801\pi\)
\(30\) 2.30681 0.421164
\(31\) 0 0
\(32\) −5.80746 −1.02662
\(33\) 3.71394 0.646514
\(34\) −0.902218 −0.154729
\(35\) 2.83030 0.478407
\(36\) 3.33228 0.555379
\(37\) −10.4128 −1.71185 −0.855925 0.517099i \(-0.827012\pi\)
−0.855925 + 0.517099i \(0.827012\pi\)
\(38\) 2.61976 0.424981
\(39\) 2.62576 0.420458
\(40\) 9.00995 1.42460
\(41\) 0.755946 0.118059 0.0590295 0.998256i \(-0.481199\pi\)
0.0590295 + 0.998256i \(0.481199\pi\)
\(42\) 0.474983 0.0732914
\(43\) −7.15689 −1.09142 −0.545708 0.837976i \(-0.683739\pi\)
−0.545708 + 0.837976i \(0.683739\pi\)
\(44\) 6.27468 0.945943
\(45\) −8.10342 −1.20799
\(46\) 2.26358 0.333746
\(47\) −0.876067 −0.127787 −0.0638937 0.997957i \(-0.520352\pi\)
−0.0638937 + 0.997957i \(0.520352\pi\)
\(48\) −1.23954 −0.178912
\(49\) −6.41723 −0.916747
\(50\) −6.03008 −0.852782
\(51\) −1.18081 −0.165347
\(52\) 4.43621 0.615191
\(53\) 3.57570 0.491161 0.245580 0.969376i \(-0.421021\pi\)
0.245580 + 0.969376i \(0.421021\pi\)
\(54\) −3.22652 −0.439074
\(55\) −15.2587 −2.05749
\(56\) 1.85519 0.247910
\(57\) 3.42871 0.454144
\(58\) −3.37550 −0.443225
\(59\) 0.927270 0.120720 0.0603601 0.998177i \(-0.480775\pi\)
0.0603601 + 0.998177i \(0.480775\pi\)
\(60\) 5.10080 0.658511
\(61\) 2.31704 0.296666 0.148333 0.988937i \(-0.452609\pi\)
0.148333 + 0.988937i \(0.452609\pi\)
\(62\) 0 0
\(63\) −1.66853 −0.210215
\(64\) 1.25699 0.157124
\(65\) −10.7879 −1.33808
\(66\) −2.56074 −0.315205
\(67\) −2.08690 −0.254955 −0.127478 0.991841i \(-0.540688\pi\)
−0.127478 + 0.991841i \(0.540688\pi\)
\(68\) −1.99498 −0.241926
\(69\) 2.96254 0.356648
\(70\) −1.95147 −0.233245
\(71\) −7.73608 −0.918104 −0.459052 0.888409i \(-0.651811\pi\)
−0.459052 + 0.888409i \(0.651811\pi\)
\(72\) −5.31159 −0.625977
\(73\) −5.65748 −0.662158 −0.331079 0.943603i \(-0.607413\pi\)
−0.331079 + 0.943603i \(0.607413\pi\)
\(74\) 7.17954 0.834604
\(75\) −7.89211 −0.911302
\(76\) 5.79278 0.664477
\(77\) −3.14184 −0.358046
\(78\) −1.81044 −0.204992
\(79\) −14.0947 −1.58578 −0.792890 0.609365i \(-0.791424\pi\)
−0.792890 + 0.609365i \(0.791424\pi\)
\(80\) 5.09266 0.569377
\(81\) 2.33418 0.259354
\(82\) −0.521219 −0.0575590
\(83\) −14.1077 −1.54852 −0.774261 0.632866i \(-0.781878\pi\)
−0.774261 + 0.632866i \(0.781878\pi\)
\(84\) 1.05028 0.114595
\(85\) 4.85137 0.526205
\(86\) 4.93462 0.532114
\(87\) −4.41782 −0.473640
\(88\) −10.0017 −1.06619
\(89\) −4.43481 −0.470089 −0.235045 0.971985i \(-0.575524\pi\)
−0.235045 + 0.971985i \(0.575524\pi\)
\(90\) 5.58725 0.588948
\(91\) −2.22129 −0.232854
\(92\) 5.00520 0.521828
\(93\) 0 0
\(94\) 0.604042 0.0623021
\(95\) −14.0869 −1.44528
\(96\) 5.24066 0.534872
\(97\) −5.27764 −0.535863 −0.267932 0.963438i \(-0.586340\pi\)
−0.267932 + 0.963438i \(0.586340\pi\)
\(98\) 4.42463 0.446955
\(99\) 8.99540 0.904072
\(100\) −13.3337 −1.33337
\(101\) 3.80743 0.378853 0.189427 0.981895i \(-0.439337\pi\)
0.189427 + 0.981895i \(0.439337\pi\)
\(102\) 0.814162 0.0806141
\(103\) −6.24569 −0.615406 −0.307703 0.951482i \(-0.599560\pi\)
−0.307703 + 0.951482i \(0.599560\pi\)
\(104\) −7.07124 −0.693392
\(105\) −2.55406 −0.249251
\(106\) −2.46542 −0.239463
\(107\) 2.32738 0.224997 0.112498 0.993652i \(-0.464115\pi\)
0.112498 + 0.993652i \(0.464115\pi\)
\(108\) −7.13445 −0.686513
\(109\) 1.47683 0.141454 0.0707272 0.997496i \(-0.477468\pi\)
0.0707272 + 0.997496i \(0.477468\pi\)
\(110\) 10.5208 1.00312
\(111\) 9.39650 0.891877
\(112\) 1.04860 0.0990835
\(113\) 6.38055 0.600231 0.300116 0.953903i \(-0.402975\pi\)
0.300116 + 0.953903i \(0.402975\pi\)
\(114\) −2.36407 −0.221415
\(115\) −12.1716 −1.13501
\(116\) −7.46388 −0.693004
\(117\) 6.35976 0.587960
\(118\) −0.639346 −0.0588566
\(119\) 0.998919 0.0915708
\(120\) −8.13059 −0.742218
\(121\) 5.93835 0.539850
\(122\) −1.59758 −0.144638
\(123\) −0.682166 −0.0615089
\(124\) 0 0
\(125\) 13.8872 1.24211
\(126\) 1.15044 0.102489
\(127\) −1.43201 −0.127071 −0.0635354 0.997980i \(-0.520238\pi\)
−0.0635354 + 0.997980i \(0.520238\pi\)
\(128\) 10.7482 0.950019
\(129\) 6.45838 0.568629
\(130\) 7.43821 0.652374
\(131\) 6.29290 0.549813 0.274907 0.961471i \(-0.411353\pi\)
0.274907 + 0.961471i \(0.411353\pi\)
\(132\) −5.66227 −0.492838
\(133\) −2.90055 −0.251509
\(134\) 1.43890 0.124302
\(135\) 17.3495 1.49321
\(136\) 3.17996 0.272679
\(137\) 12.7499 1.08930 0.544649 0.838664i \(-0.316663\pi\)
0.544649 + 0.838664i \(0.316663\pi\)
\(138\) −2.04265 −0.173882
\(139\) 18.7137 1.58728 0.793640 0.608388i \(-0.208184\pi\)
0.793640 + 0.608388i \(0.208184\pi\)
\(140\) −4.31507 −0.364690
\(141\) 0.790563 0.0665774
\(142\) 5.33397 0.447617
\(143\) 11.9754 1.00144
\(144\) −3.00225 −0.250187
\(145\) 18.1506 1.50733
\(146\) 3.90079 0.322832
\(147\) 5.79091 0.477627
\(148\) 15.8753 1.30494
\(149\) −20.1353 −1.64955 −0.824774 0.565462i \(-0.808698\pi\)
−0.824774 + 0.565462i \(0.808698\pi\)
\(150\) 5.44155 0.444301
\(151\) 15.3725 1.25099 0.625497 0.780227i \(-0.284896\pi\)
0.625497 + 0.780227i \(0.284896\pi\)
\(152\) −9.23359 −0.748943
\(153\) −2.86001 −0.231218
\(154\) 2.16628 0.174564
\(155\) 0 0
\(156\) −4.00324 −0.320515
\(157\) 15.1473 1.20888 0.604442 0.796649i \(-0.293396\pi\)
0.604442 + 0.796649i \(0.293396\pi\)
\(158\) 9.71821 0.773139
\(159\) −3.22672 −0.255895
\(160\) −21.5313 −1.70220
\(161\) −2.50619 −0.197515
\(162\) −1.60940 −0.126447
\(163\) −1.04487 −0.0818405 −0.0409202 0.999162i \(-0.513029\pi\)
−0.0409202 + 0.999162i \(0.513029\pi\)
\(164\) −1.15251 −0.0899963
\(165\) 13.7695 1.07195
\(166\) 9.72717 0.754975
\(167\) −11.2894 −0.873600 −0.436800 0.899559i \(-0.643888\pi\)
−0.436800 + 0.899559i \(0.643888\pi\)
\(168\) −1.67412 −0.129161
\(169\) −4.53335 −0.348719
\(170\) −3.34499 −0.256549
\(171\) 8.30455 0.635065
\(172\) 10.9114 0.831986
\(173\) −20.6527 −1.57019 −0.785097 0.619373i \(-0.787387\pi\)
−0.785097 + 0.619373i \(0.787387\pi\)
\(174\) 3.04606 0.230921
\(175\) 6.67640 0.504688
\(176\) −5.65324 −0.426129
\(177\) −0.836769 −0.0628954
\(178\) 3.05777 0.229190
\(179\) −0.131662 −0.00984091 −0.00492045 0.999988i \(-0.501566\pi\)
−0.00492045 + 0.999988i \(0.501566\pi\)
\(180\) 12.3545 0.920848
\(181\) 7.73199 0.574714 0.287357 0.957824i \(-0.407223\pi\)
0.287357 + 0.957824i \(0.407223\pi\)
\(182\) 1.53156 0.113527
\(183\) −2.09090 −0.154564
\(184\) −7.97820 −0.588161
\(185\) −38.6056 −2.83834
\(186\) 0 0
\(187\) −5.38539 −0.393819
\(188\) 1.33565 0.0974124
\(189\) 3.57234 0.259850
\(190\) 9.71279 0.704640
\(191\) −21.1027 −1.52694 −0.763468 0.645846i \(-0.776505\pi\)
−0.763468 + 0.645846i \(0.776505\pi\)
\(192\) −1.13431 −0.0818620
\(193\) 5.66324 0.407649 0.203824 0.979007i \(-0.434663\pi\)
0.203824 + 0.979007i \(0.434663\pi\)
\(194\) 3.63889 0.261257
\(195\) 9.73506 0.697142
\(196\) 9.78371 0.698836
\(197\) 15.9148 1.13388 0.566941 0.823758i \(-0.308127\pi\)
0.566941 + 0.823758i \(0.308127\pi\)
\(198\) −6.20227 −0.440776
\(199\) −4.26145 −0.302086 −0.151043 0.988527i \(-0.548263\pi\)
−0.151043 + 0.988527i \(0.548263\pi\)
\(200\) 21.2536 1.50286
\(201\) 1.88322 0.132832
\(202\) −2.62520 −0.184708
\(203\) 3.73730 0.262307
\(204\) 1.80027 0.126044
\(205\) 2.80268 0.195748
\(206\) 4.30636 0.300038
\(207\) 7.17547 0.498730
\(208\) −3.99685 −0.277131
\(209\) 15.6375 1.08167
\(210\) 1.76101 0.121521
\(211\) −11.5083 −0.792263 −0.396131 0.918194i \(-0.629648\pi\)
−0.396131 + 0.918194i \(0.629648\pi\)
\(212\) −5.45152 −0.374412
\(213\) 6.98105 0.478334
\(214\) −1.60471 −0.109696
\(215\) −26.5343 −1.80962
\(216\) 11.3722 0.773780
\(217\) 0 0
\(218\) −1.01826 −0.0689654
\(219\) 5.10531 0.344985
\(220\) 23.2635 1.56842
\(221\) −3.80748 −0.256119
\(222\) −6.47882 −0.434830
\(223\) 9.42391 0.631072 0.315536 0.948914i \(-0.397816\pi\)
0.315536 + 0.948914i \(0.397816\pi\)
\(224\) −4.43338 −0.296218
\(225\) −19.1152 −1.27435
\(226\) −4.39934 −0.292640
\(227\) 21.7630 1.44446 0.722231 0.691652i \(-0.243117\pi\)
0.722231 + 0.691652i \(0.243117\pi\)
\(228\) −5.22741 −0.346194
\(229\) 16.9559 1.12048 0.560238 0.828331i \(-0.310709\pi\)
0.560238 + 0.828331i \(0.310709\pi\)
\(230\) 8.39224 0.553368
\(231\) 2.83520 0.186542
\(232\) 11.8973 0.781096
\(233\) −9.83611 −0.644385 −0.322192 0.946674i \(-0.604420\pi\)
−0.322192 + 0.946674i \(0.604420\pi\)
\(234\) −4.38501 −0.286657
\(235\) −3.24803 −0.211878
\(236\) −1.41372 −0.0920250
\(237\) 12.7191 0.826193
\(238\) −0.688748 −0.0446449
\(239\) 0.590635 0.0382050 0.0191025 0.999818i \(-0.493919\pi\)
0.0191025 + 0.999818i \(0.493919\pi\)
\(240\) −4.59562 −0.296646
\(241\) 15.3704 0.990097 0.495049 0.868865i \(-0.335150\pi\)
0.495049 + 0.868865i \(0.335150\pi\)
\(242\) −4.09445 −0.263201
\(243\) −16.1450 −1.03570
\(244\) −3.53256 −0.226149
\(245\) −23.7920 −1.52001
\(246\) 0.470349 0.0299883
\(247\) 11.0557 0.703459
\(248\) 0 0
\(249\) 12.7308 0.806783
\(250\) −9.57510 −0.605582
\(251\) −6.05150 −0.381967 −0.190984 0.981593i \(-0.561168\pi\)
−0.190984 + 0.981593i \(0.561168\pi\)
\(252\) 2.54384 0.160247
\(253\) 13.5114 0.849455
\(254\) 0.987363 0.0619527
\(255\) −4.37788 −0.274154
\(256\) −9.92482 −0.620301
\(257\) −4.52784 −0.282439 −0.141219 0.989978i \(-0.545102\pi\)
−0.141219 + 0.989978i \(0.545102\pi\)
\(258\) −4.45301 −0.277232
\(259\) −7.94906 −0.493930
\(260\) 16.4473 1.02002
\(261\) −10.7002 −0.662329
\(262\) −4.33891 −0.268059
\(263\) −2.50886 −0.154703 −0.0773516 0.997004i \(-0.524646\pi\)
−0.0773516 + 0.997004i \(0.524646\pi\)
\(264\) 9.02557 0.555485
\(265\) 13.2570 0.814370
\(266\) 1.99991 0.122622
\(267\) 4.00198 0.244917
\(268\) 3.18168 0.194352
\(269\) 13.3398 0.813340 0.406670 0.913575i \(-0.366690\pi\)
0.406670 + 0.913575i \(0.366690\pi\)
\(270\) −11.9624 −0.728007
\(271\) 13.8242 0.839759 0.419879 0.907580i \(-0.362072\pi\)
0.419879 + 0.907580i \(0.362072\pi\)
\(272\) 1.79739 0.108983
\(273\) 2.00449 0.121317
\(274\) −8.79097 −0.531082
\(275\) −35.9939 −2.17051
\(276\) −4.51669 −0.271873
\(277\) 11.5707 0.695219 0.347609 0.937639i \(-0.386994\pi\)
0.347609 + 0.937639i \(0.386994\pi\)
\(278\) −12.9030 −0.773870
\(279\) 0 0
\(280\) 6.87814 0.411048
\(281\) −15.3993 −0.918648 −0.459324 0.888269i \(-0.651908\pi\)
−0.459324 + 0.888269i \(0.651908\pi\)
\(282\) −0.545088 −0.0324595
\(283\) −22.6957 −1.34912 −0.674560 0.738220i \(-0.735667\pi\)
−0.674560 + 0.738220i \(0.735667\pi\)
\(284\) 11.7944 0.699871
\(285\) 12.7120 0.752994
\(286\) −8.25698 −0.488245
\(287\) 0.577084 0.0340642
\(288\) 12.6932 0.747955
\(289\) −15.2878 −0.899280
\(290\) −12.5147 −0.734890
\(291\) 4.76255 0.279185
\(292\) 8.62539 0.504763
\(293\) 12.4009 0.724466 0.362233 0.932088i \(-0.382014\pi\)
0.362233 + 0.932088i \(0.382014\pi\)
\(294\) −3.99279 −0.232864
\(295\) 3.43787 0.200160
\(296\) −25.3050 −1.47082
\(297\) −19.2593 −1.11754
\(298\) 13.8831 0.804229
\(299\) 9.55259 0.552441
\(300\) 12.0323 0.694685
\(301\) −5.46353 −0.314912
\(302\) −10.5992 −0.609915
\(303\) −3.43583 −0.197383
\(304\) −5.21907 −0.299334
\(305\) 8.59046 0.491888
\(306\) 1.97195 0.112729
\(307\) 30.7200 1.75328 0.876641 0.481145i \(-0.159779\pi\)
0.876641 + 0.481145i \(0.159779\pi\)
\(308\) 4.79005 0.272938
\(309\) 5.63612 0.320628
\(310\) 0 0
\(311\) 2.38141 0.135037 0.0675187 0.997718i \(-0.478492\pi\)
0.0675187 + 0.997718i \(0.478492\pi\)
\(312\) 6.38109 0.361258
\(313\) 10.7456 0.607377 0.303688 0.952771i \(-0.401782\pi\)
0.303688 + 0.952771i \(0.401782\pi\)
\(314\) −10.4439 −0.589385
\(315\) −6.18610 −0.348547
\(316\) 21.4888 1.20884
\(317\) 8.74635 0.491244 0.245622 0.969366i \(-0.421008\pi\)
0.245622 + 0.969366i \(0.421008\pi\)
\(318\) 2.22480 0.124761
\(319\) −20.1486 −1.12810
\(320\) 4.66033 0.260520
\(321\) −2.10023 −0.117224
\(322\) 1.72800 0.0962977
\(323\) −4.97179 −0.276638
\(324\) −3.55869 −0.197705
\(325\) −25.4477 −1.41159
\(326\) 0.720430 0.0399009
\(327\) −1.33269 −0.0736979
\(328\) 1.83709 0.101436
\(329\) −0.668784 −0.0368713
\(330\) −9.49397 −0.522626
\(331\) −32.3691 −1.77917 −0.889583 0.456773i \(-0.849005\pi\)
−0.889583 + 0.456773i \(0.849005\pi\)
\(332\) 21.5086 1.18044
\(333\) 22.7589 1.24718
\(334\) 7.78396 0.425919
\(335\) −7.73721 −0.422729
\(336\) −0.946258 −0.0516226
\(337\) 27.7338 1.51076 0.755378 0.655289i \(-0.227453\pi\)
0.755378 + 0.655289i \(0.227453\pi\)
\(338\) 3.12571 0.170016
\(339\) −5.75781 −0.312721
\(340\) −7.39640 −0.401126
\(341\) 0 0
\(342\) −5.72593 −0.309623
\(343\) −10.2426 −0.553050
\(344\) −17.3926 −0.937745
\(345\) 10.9837 0.591342
\(346\) 14.2399 0.765540
\(347\) −25.9161 −1.39125 −0.695624 0.718407i \(-0.744872\pi\)
−0.695624 + 0.718407i \(0.744872\pi\)
\(348\) 6.73541 0.361056
\(349\) 5.59393 0.299436 0.149718 0.988729i \(-0.452163\pi\)
0.149718 + 0.988729i \(0.452163\pi\)
\(350\) −4.60333 −0.246058
\(351\) −13.6163 −0.726787
\(352\) 23.9013 1.27394
\(353\) 11.6690 0.621077 0.310538 0.950561i \(-0.399491\pi\)
0.310538 + 0.950561i \(0.399491\pi\)
\(354\) 0.576946 0.0306643
\(355\) −28.6817 −1.52226
\(356\) 6.76131 0.358349
\(357\) −0.901426 −0.0477085
\(358\) 0.0907803 0.00479789
\(359\) 26.1998 1.38278 0.691388 0.722484i \(-0.257000\pi\)
0.691388 + 0.722484i \(0.257000\pi\)
\(360\) −19.6928 −1.03790
\(361\) −4.56348 −0.240183
\(362\) −5.33115 −0.280199
\(363\) −5.35877 −0.281263
\(364\) 3.38657 0.177505
\(365\) −20.9752 −1.09789
\(366\) 1.44166 0.0753567
\(367\) 27.0146 1.41015 0.705076 0.709132i \(-0.250913\pi\)
0.705076 + 0.709132i \(0.250913\pi\)
\(368\) −4.50948 −0.235073
\(369\) −1.65225 −0.0860127
\(370\) 26.6183 1.38382
\(371\) 2.72967 0.141717
\(372\) 0 0
\(373\) −12.4058 −0.642351 −0.321175 0.947020i \(-0.604078\pi\)
−0.321175 + 0.947020i \(0.604078\pi\)
\(374\) 3.71319 0.192004
\(375\) −12.5318 −0.647139
\(376\) −2.12900 −0.109795
\(377\) −14.2451 −0.733658
\(378\) −2.46311 −0.126688
\(379\) −4.63901 −0.238290 −0.119145 0.992877i \(-0.538015\pi\)
−0.119145 + 0.992877i \(0.538015\pi\)
\(380\) 21.4768 1.10174
\(381\) 1.29225 0.0662040
\(382\) 14.5501 0.744450
\(383\) −5.02133 −0.256578 −0.128289 0.991737i \(-0.540949\pi\)
−0.128289 + 0.991737i \(0.540949\pi\)
\(384\) −9.69922 −0.494961
\(385\) −11.6484 −0.593659
\(386\) −3.90476 −0.198747
\(387\) 15.6426 0.795159
\(388\) 8.04629 0.408488
\(389\) 18.6018 0.943151 0.471575 0.881826i \(-0.343686\pi\)
0.471575 + 0.881826i \(0.343686\pi\)
\(390\) −6.71225 −0.339888
\(391\) −4.29583 −0.217249
\(392\) −15.5951 −0.787670
\(393\) −5.67872 −0.286453
\(394\) −10.9731 −0.552819
\(395\) −52.2564 −2.62930
\(396\) −13.7144 −0.689174
\(397\) 32.5588 1.63408 0.817040 0.576581i \(-0.195614\pi\)
0.817040 + 0.576581i \(0.195614\pi\)
\(398\) 2.93824 0.147281
\(399\) 2.61746 0.131037
\(400\) 12.0131 0.600655
\(401\) −12.3903 −0.618740 −0.309370 0.950942i \(-0.600118\pi\)
−0.309370 + 0.950942i \(0.600118\pi\)
\(402\) −1.29847 −0.0647616
\(403\) 0 0
\(404\) −5.80481 −0.288800
\(405\) 8.65402 0.430022
\(406\) −2.57684 −0.127886
\(407\) 42.8551 2.12425
\(408\) −2.86960 −0.142066
\(409\) −3.44808 −0.170497 −0.0852484 0.996360i \(-0.527168\pi\)
−0.0852484 + 0.996360i \(0.527168\pi\)
\(410\) −1.93243 −0.0954358
\(411\) −11.5055 −0.567526
\(412\) 9.52218 0.469124
\(413\) 0.707872 0.0348321
\(414\) −4.94744 −0.243153
\(415\) −52.3046 −2.56753
\(416\) 16.8983 0.828506
\(417\) −16.8873 −0.826975
\(418\) −10.7819 −0.527361
\(419\) −40.0471 −1.95643 −0.978216 0.207592i \(-0.933437\pi\)
−0.978216 + 0.207592i \(0.933437\pi\)
\(420\) 3.89392 0.190004
\(421\) 21.6844 1.05683 0.528417 0.848985i \(-0.322786\pi\)
0.528417 + 0.848985i \(0.322786\pi\)
\(422\) 7.93488 0.386264
\(423\) 1.91479 0.0931005
\(424\) 8.68963 0.422006
\(425\) 11.4439 0.555112
\(426\) −4.81338 −0.233209
\(427\) 1.76881 0.0855989
\(428\) −3.54833 −0.171515
\(429\) −10.8066 −0.521750
\(430\) 18.2952 0.882273
\(431\) −11.6207 −0.559748 −0.279874 0.960037i \(-0.590293\pi\)
−0.279874 + 0.960037i \(0.590293\pi\)
\(432\) 6.42786 0.309260
\(433\) 24.5964 1.18203 0.591015 0.806661i \(-0.298728\pi\)
0.591015 + 0.806661i \(0.298728\pi\)
\(434\) 0 0
\(435\) −16.3791 −0.785320
\(436\) −2.25157 −0.107831
\(437\) 12.4737 0.596700
\(438\) −3.52008 −0.168196
\(439\) 18.1932 0.868316 0.434158 0.900837i \(-0.357046\pi\)
0.434158 + 0.900837i \(0.357046\pi\)
\(440\) −37.0816 −1.76779
\(441\) 14.0260 0.667903
\(442\) 2.62523 0.124869
\(443\) 17.7603 0.843819 0.421909 0.906638i \(-0.361360\pi\)
0.421909 + 0.906638i \(0.361360\pi\)
\(444\) −14.3259 −0.679878
\(445\) −16.4421 −0.779432
\(446\) −6.49772 −0.307676
\(447\) 18.1701 0.859417
\(448\) 0.959582 0.0453360
\(449\) −9.19857 −0.434107 −0.217054 0.976160i \(-0.569645\pi\)
−0.217054 + 0.976160i \(0.569645\pi\)
\(450\) 13.1798 0.621301
\(451\) −3.11119 −0.146500
\(452\) −9.72778 −0.457556
\(453\) −13.8721 −0.651769
\(454\) −15.0054 −0.704241
\(455\) −8.23545 −0.386084
\(456\) 8.33240 0.390200
\(457\) −31.1999 −1.45947 −0.729735 0.683730i \(-0.760356\pi\)
−0.729735 + 0.683730i \(0.760356\pi\)
\(458\) −11.6910 −0.546283
\(459\) 6.12331 0.285812
\(460\) 18.5568 0.865218
\(461\) −6.66847 −0.310582 −0.155291 0.987869i \(-0.549631\pi\)
−0.155291 + 0.987869i \(0.549631\pi\)
\(462\) −1.95485 −0.0909479
\(463\) 35.3185 1.64139 0.820694 0.571368i \(-0.193587\pi\)
0.820694 + 0.571368i \(0.193587\pi\)
\(464\) 6.72466 0.312184
\(465\) 0 0
\(466\) 6.78192 0.314167
\(467\) 35.9434 1.66326 0.831632 0.555327i \(-0.187407\pi\)
0.831632 + 0.555327i \(0.187407\pi\)
\(468\) −9.69609 −0.448202
\(469\) −1.59312 −0.0735637
\(470\) 2.23949 0.103300
\(471\) −13.6689 −0.629830
\(472\) 2.25344 0.103723
\(473\) 29.4551 1.35434
\(474\) −8.76972 −0.402806
\(475\) −33.2296 −1.52468
\(476\) −1.52295 −0.0698044
\(477\) −7.81532 −0.357839
\(478\) −0.407239 −0.0186267
\(479\) 33.2444 1.51898 0.759488 0.650521i \(-0.225450\pi\)
0.759488 + 0.650521i \(0.225450\pi\)
\(480\) 19.4298 0.886846
\(481\) 30.2986 1.38150
\(482\) −10.5978 −0.482717
\(483\) 2.26159 0.102906
\(484\) −9.05361 −0.411528
\(485\) −19.5669 −0.888489
\(486\) 11.1319 0.504953
\(487\) 28.5154 1.29215 0.646077 0.763272i \(-0.276408\pi\)
0.646077 + 0.763272i \(0.276408\pi\)
\(488\) 5.63084 0.254896
\(489\) 0.942891 0.0426390
\(490\) 16.4044 0.741075
\(491\) −27.9636 −1.26198 −0.630991 0.775790i \(-0.717351\pi\)
−0.630991 + 0.775790i \(0.717351\pi\)
\(492\) 1.04003 0.0468882
\(493\) 6.40605 0.288514
\(494\) −7.62284 −0.342968
\(495\) 33.3506 1.49900
\(496\) 0 0
\(497\) −5.90568 −0.264906
\(498\) −8.77780 −0.393343
\(499\) −41.3050 −1.84906 −0.924532 0.381104i \(-0.875544\pi\)
−0.924532 + 0.381104i \(0.875544\pi\)
\(500\) −21.1724 −0.946857
\(501\) 10.1876 0.455147
\(502\) 4.17247 0.186226
\(503\) −25.5860 −1.14082 −0.570412 0.821358i \(-0.693217\pi\)
−0.570412 + 0.821358i \(0.693217\pi\)
\(504\) −4.05484 −0.180617
\(505\) 14.1161 0.628159
\(506\) −9.31602 −0.414148
\(507\) 4.09090 0.181683
\(508\) 2.18325 0.0968660
\(509\) −24.4678 −1.08452 −0.542258 0.840212i \(-0.682430\pi\)
−0.542258 + 0.840212i \(0.682430\pi\)
\(510\) 3.01852 0.133662
\(511\) −4.31888 −0.191056
\(512\) −14.6534 −0.647594
\(513\) −17.7802 −0.785014
\(514\) 3.12191 0.137702
\(515\) −23.1560 −1.02038
\(516\) −9.84645 −0.433466
\(517\) 3.60556 0.158572
\(518\) 5.48082 0.240813
\(519\) 18.6370 0.818073
\(520\) −26.2167 −1.14968
\(521\) 14.9656 0.655654 0.327827 0.944738i \(-0.393684\pi\)
0.327827 + 0.944738i \(0.393684\pi\)
\(522\) 7.37774 0.322915
\(523\) −20.9656 −0.916763 −0.458381 0.888756i \(-0.651571\pi\)
−0.458381 + 0.888756i \(0.651571\pi\)
\(524\) −9.59415 −0.419123
\(525\) −6.02479 −0.262943
\(526\) 1.72984 0.0754247
\(527\) 0 0
\(528\) 5.10148 0.222014
\(529\) −12.2222 −0.531399
\(530\) −9.14059 −0.397042
\(531\) −2.02671 −0.0879517
\(532\) 4.42217 0.191726
\(533\) −2.19961 −0.0952759
\(534\) −2.75933 −0.119408
\(535\) 8.62882 0.373056
\(536\) −5.07155 −0.219058
\(537\) 0.118812 0.00512713
\(538\) −9.19768 −0.396540
\(539\) 26.4109 1.13760
\(540\) −26.4511 −1.13827
\(541\) 1.73130 0.0744345 0.0372172 0.999307i \(-0.488151\pi\)
0.0372172 + 0.999307i \(0.488151\pi\)
\(542\) −9.53167 −0.409420
\(543\) −6.97735 −0.299427
\(544\) −7.59920 −0.325813
\(545\) 5.47536 0.234539
\(546\) −1.38208 −0.0591476
\(547\) −13.1214 −0.561032 −0.280516 0.959849i \(-0.590506\pi\)
−0.280516 + 0.959849i \(0.590506\pi\)
\(548\) −19.4385 −0.830372
\(549\) −5.06429 −0.216139
\(550\) 24.8175 1.05822
\(551\) −18.6012 −0.792436
\(552\) 7.19953 0.306432
\(553\) −10.7598 −0.457554
\(554\) −7.97795 −0.338950
\(555\) 34.8377 1.47878
\(556\) −28.5310 −1.20998
\(557\) −28.0246 −1.18744 −0.593721 0.804671i \(-0.702342\pi\)
−0.593721 + 0.804671i \(0.702342\pi\)
\(558\) 0 0
\(559\) 20.8248 0.880794
\(560\) 3.88770 0.164286
\(561\) 4.85978 0.205180
\(562\) 10.6177 0.447882
\(563\) 22.6519 0.954662 0.477331 0.878723i \(-0.341604\pi\)
0.477331 + 0.878723i \(0.341604\pi\)
\(564\) −1.20529 −0.0507520
\(565\) 23.6560 0.995215
\(566\) 15.6485 0.657757
\(567\) 1.78190 0.0748328
\(568\) −18.8001 −0.788836
\(569\) −46.4420 −1.94695 −0.973475 0.228792i \(-0.926522\pi\)
−0.973475 + 0.228792i \(0.926522\pi\)
\(570\) −8.76483 −0.367118
\(571\) −12.4984 −0.523040 −0.261520 0.965198i \(-0.584224\pi\)
−0.261520 + 0.965198i \(0.584224\pi\)
\(572\) −18.2577 −0.763395
\(573\) 19.0431 0.795536
\(574\) −0.397896 −0.0166078
\(575\) −28.7117 −1.19736
\(576\) −2.74738 −0.114474
\(577\) −30.4843 −1.26908 −0.634539 0.772891i \(-0.718810\pi\)
−0.634539 + 0.772891i \(0.718810\pi\)
\(578\) 10.5408 0.438440
\(579\) −5.11051 −0.212385
\(580\) −27.6725 −1.14904
\(581\) −10.7697 −0.446804
\(582\) −3.28374 −0.136115
\(583\) −14.7162 −0.609485
\(584\) −13.7487 −0.568926
\(585\) 23.5789 0.974869
\(586\) −8.55030 −0.353210
\(587\) 33.6581 1.38922 0.694609 0.719387i \(-0.255577\pi\)
0.694609 + 0.719387i \(0.255577\pi\)
\(588\) −8.82883 −0.364095
\(589\) 0 0
\(590\) −2.37039 −0.0975872
\(591\) −14.3615 −0.590754
\(592\) −14.3030 −0.587851
\(593\) −44.8879 −1.84333 −0.921663 0.387992i \(-0.873169\pi\)
−0.921663 + 0.387992i \(0.873169\pi\)
\(594\) 13.2791 0.544850
\(595\) 3.70351 0.151829
\(596\) 30.6983 1.25745
\(597\) 3.84554 0.157387
\(598\) −6.58644 −0.269340
\(599\) −19.5846 −0.800206 −0.400103 0.916470i \(-0.631026\pi\)
−0.400103 + 0.916470i \(0.631026\pi\)
\(600\) −19.1793 −0.782991
\(601\) 30.4595 1.24247 0.621234 0.783625i \(-0.286632\pi\)
0.621234 + 0.783625i \(0.286632\pi\)
\(602\) 3.76706 0.153534
\(603\) 4.56127 0.185749
\(604\) −23.4368 −0.953632
\(605\) 22.0165 0.895099
\(606\) 2.36898 0.0962332
\(607\) −13.3746 −0.542857 −0.271428 0.962459i \(-0.587496\pi\)
−0.271428 + 0.962459i \(0.587496\pi\)
\(608\) 22.0657 0.894882
\(609\) −3.37254 −0.136662
\(610\) −5.92306 −0.239818
\(611\) 2.54914 0.103127
\(612\) 4.36036 0.176257
\(613\) −5.19521 −0.209832 −0.104916 0.994481i \(-0.533457\pi\)
−0.104916 + 0.994481i \(0.533457\pi\)
\(614\) −21.1812 −0.854804
\(615\) −2.52914 −0.101985
\(616\) −7.63526 −0.307633
\(617\) −30.0131 −1.20828 −0.604140 0.796878i \(-0.706483\pi\)
−0.604140 + 0.796878i \(0.706483\pi\)
\(618\) −3.88606 −0.156320
\(619\) 18.3260 0.736584 0.368292 0.929710i \(-0.379943\pi\)
0.368292 + 0.929710i \(0.379943\pi\)
\(620\) 0 0
\(621\) −15.3628 −0.616487
\(622\) −1.64197 −0.0658369
\(623\) −3.38551 −0.135638
\(624\) 3.60676 0.144386
\(625\) 7.75849 0.310339
\(626\) −7.40901 −0.296123
\(627\) −14.1113 −0.563550
\(628\) −23.0935 −0.921532
\(629\) −13.6254 −0.543279
\(630\) 4.26527 0.169932
\(631\) 10.3352 0.411438 0.205719 0.978611i \(-0.434047\pi\)
0.205719 + 0.978611i \(0.434047\pi\)
\(632\) −34.2528 −1.36250
\(633\) 10.3851 0.412770
\(634\) −6.03054 −0.239503
\(635\) −5.30922 −0.210690
\(636\) 4.91945 0.195069
\(637\) 18.6725 0.739833
\(638\) 13.8923 0.550001
\(639\) 16.9085 0.668892
\(640\) 39.8493 1.57518
\(641\) 0.101252 0.00399921 0.00199961 0.999998i \(-0.499364\pi\)
0.00199961 + 0.999998i \(0.499364\pi\)
\(642\) 1.44810 0.0571518
\(643\) −13.7118 −0.540742 −0.270371 0.962756i \(-0.587146\pi\)
−0.270371 + 0.962756i \(0.587146\pi\)
\(644\) 3.82094 0.150566
\(645\) 23.9446 0.942816
\(646\) 3.42801 0.134873
\(647\) −10.8344 −0.425943 −0.212971 0.977058i \(-0.568314\pi\)
−0.212971 + 0.977058i \(0.568314\pi\)
\(648\) 5.67250 0.222837
\(649\) −3.81629 −0.149803
\(650\) 17.5460 0.688212
\(651\) 0 0
\(652\) 1.59301 0.0623870
\(653\) −24.2522 −0.949061 −0.474531 0.880239i \(-0.657382\pi\)
−0.474531 + 0.880239i \(0.657382\pi\)
\(654\) 0.918880 0.0359310
\(655\) 23.3310 0.911619
\(656\) 1.03837 0.0405415
\(657\) 12.3654 0.482420
\(658\) 0.461122 0.0179764
\(659\) −8.53349 −0.332418 −0.166209 0.986091i \(-0.553153\pi\)
−0.166209 + 0.986091i \(0.553153\pi\)
\(660\) −20.9930 −0.817150
\(661\) 37.8842 1.47352 0.736762 0.676152i \(-0.236354\pi\)
0.736762 + 0.676152i \(0.236354\pi\)
\(662\) 22.3183 0.867424
\(663\) 3.43587 0.133438
\(664\) −34.2844 −1.33049
\(665\) −10.7538 −0.417015
\(666\) −15.6921 −0.608057
\(667\) −16.0722 −0.622316
\(668\) 17.2118 0.665945
\(669\) −8.50414 −0.328789
\(670\) 5.33475 0.206099
\(671\) −9.53606 −0.368136
\(672\) 4.00069 0.154330
\(673\) 7.12011 0.274460 0.137230 0.990539i \(-0.456180\pi\)
0.137230 + 0.990539i \(0.456180\pi\)
\(674\) −19.1223 −0.736562
\(675\) 40.9259 1.57524
\(676\) 6.91154 0.265829
\(677\) 48.0610 1.84713 0.923567 0.383438i \(-0.125260\pi\)
0.923567 + 0.383438i \(0.125260\pi\)
\(678\) 3.96997 0.152466
\(679\) −4.02892 −0.154616
\(680\) 11.7897 0.452116
\(681\) −19.6390 −0.752567
\(682\) 0 0
\(683\) 32.5731 1.24638 0.623188 0.782072i \(-0.285837\pi\)
0.623188 + 0.782072i \(0.285837\pi\)
\(684\) −12.6611 −0.484110
\(685\) 47.2705 1.80611
\(686\) 7.06222 0.269637
\(687\) −15.3010 −0.583770
\(688\) −9.83073 −0.374793
\(689\) −10.4044 −0.396376
\(690\) −7.57317 −0.288306
\(691\) 27.2531 1.03676 0.518378 0.855152i \(-0.326536\pi\)
0.518378 + 0.855152i \(0.326536\pi\)
\(692\) 31.4871 1.19696
\(693\) 6.86704 0.260857
\(694\) 17.8689 0.678296
\(695\) 69.3815 2.63179
\(696\) −10.7361 −0.406952
\(697\) 0.989173 0.0374676
\(698\) −3.85698 −0.145989
\(699\) 8.87611 0.335725
\(700\) −10.1788 −0.384724
\(701\) 8.48915 0.320631 0.160315 0.987066i \(-0.448749\pi\)
0.160315 + 0.987066i \(0.448749\pi\)
\(702\) 9.38837 0.354341
\(703\) 39.5638 1.49218
\(704\) −5.17332 −0.194977
\(705\) 2.93103 0.110389
\(706\) −8.04567 −0.302803
\(707\) 2.90657 0.109313
\(708\) 1.27574 0.0479452
\(709\) −23.3861 −0.878283 −0.439142 0.898418i \(-0.644717\pi\)
−0.439142 + 0.898418i \(0.644717\pi\)
\(710\) 19.7758 0.742172
\(711\) 30.8064 1.15533
\(712\) −10.7774 −0.403901
\(713\) 0 0
\(714\) 0.621526 0.0232600
\(715\) 44.3991 1.66043
\(716\) 0.200732 0.00750172
\(717\) −0.532990 −0.0199049
\(718\) −18.0646 −0.674165
\(719\) 12.9769 0.483956 0.241978 0.970282i \(-0.422204\pi\)
0.241978 + 0.970282i \(0.422204\pi\)
\(720\) −11.1309 −0.414824
\(721\) −4.76792 −0.177567
\(722\) 3.14649 0.117100
\(723\) −13.8703 −0.515842
\(724\) −11.7882 −0.438104
\(725\) 42.8156 1.59013
\(726\) 3.69483 0.137128
\(727\) −12.4230 −0.460744 −0.230372 0.973103i \(-0.573994\pi\)
−0.230372 + 0.973103i \(0.573994\pi\)
\(728\) −5.39814 −0.200068
\(729\) 7.56675 0.280250
\(730\) 14.4622 0.535272
\(731\) −9.36496 −0.346376
\(732\) 3.18778 0.117824
\(733\) −34.1573 −1.26163 −0.630815 0.775933i \(-0.717279\pi\)
−0.630815 + 0.775933i \(0.717279\pi\)
\(734\) −18.6264 −0.687512
\(735\) 21.4699 0.791929
\(736\) 19.0657 0.702769
\(737\) 8.58888 0.316376
\(738\) 1.13921 0.0419351
\(739\) −12.3749 −0.455219 −0.227610 0.973752i \(-0.573091\pi\)
−0.227610 + 0.973752i \(0.573091\pi\)
\(740\) 58.8580 2.16366
\(741\) −9.97669 −0.366503
\(742\) −1.88209 −0.0690936
\(743\) −16.2455 −0.595990 −0.297995 0.954567i \(-0.596318\pi\)
−0.297995 + 0.954567i \(0.596318\pi\)
\(744\) 0 0
\(745\) −74.6520 −2.73504
\(746\) 8.55374 0.313175
\(747\) 30.8348 1.12819
\(748\) 8.21057 0.300208
\(749\) 1.77671 0.0649196
\(750\) 8.64058 0.315509
\(751\) −10.7883 −0.393670 −0.196835 0.980437i \(-0.563066\pi\)
−0.196835 + 0.980437i \(0.563066\pi\)
\(752\) −1.20337 −0.0438823
\(753\) 5.46088 0.199006
\(754\) 9.82187 0.357691
\(755\) 56.9936 2.07421
\(756\) −5.44640 −0.198083
\(757\) 41.1017 1.49387 0.746933 0.664900i \(-0.231526\pi\)
0.746933 + 0.664900i \(0.231526\pi\)
\(758\) 3.19857 0.116177
\(759\) −12.1927 −0.442568
\(760\) −34.2337 −1.24179
\(761\) 19.6605 0.712693 0.356347 0.934354i \(-0.384022\pi\)
0.356347 + 0.934354i \(0.384022\pi\)
\(762\) −0.890998 −0.0322774
\(763\) 1.12740 0.0408146
\(764\) 32.1731 1.16398
\(765\) −10.6035 −0.383371
\(766\) 3.46217 0.125093
\(767\) −2.69812 −0.0974236
\(768\) 8.95617 0.323178
\(769\) 3.78834 0.136611 0.0683055 0.997664i \(-0.478241\pi\)
0.0683055 + 0.997664i \(0.478241\pi\)
\(770\) 8.03151 0.289435
\(771\) 4.08593 0.147151
\(772\) −8.63417 −0.310750
\(773\) −25.3696 −0.912480 −0.456240 0.889857i \(-0.650804\pi\)
−0.456240 + 0.889857i \(0.650804\pi\)
\(774\) −10.7855 −0.387676
\(775\) 0 0
\(776\) −12.8256 −0.460414
\(777\) 7.17323 0.257338
\(778\) −12.8258 −0.459828
\(779\) −2.87225 −0.102909
\(780\) −14.8421 −0.531431
\(781\) 31.8388 1.13928
\(782\) 2.96194 0.105919
\(783\) 22.9094 0.818714
\(784\) −8.81473 −0.314812
\(785\) 56.1588 2.00439
\(786\) 3.91543 0.139659
\(787\) −25.9466 −0.924896 −0.462448 0.886646i \(-0.653029\pi\)
−0.462448 + 0.886646i \(0.653029\pi\)
\(788\) −24.2637 −0.864359
\(789\) 2.26400 0.0806006
\(790\) 36.0304 1.28190
\(791\) 4.87087 0.173188
\(792\) 21.8605 0.776779
\(793\) −6.74201 −0.239416
\(794\) −22.4491 −0.796687
\(795\) −11.9631 −0.424288
\(796\) 6.49701 0.230280
\(797\) −18.5026 −0.655396 −0.327698 0.944782i \(-0.606273\pi\)
−0.327698 + 0.944782i \(0.606273\pi\)
\(798\) −1.80472 −0.0638863
\(799\) −1.14635 −0.0405551
\(800\) −50.7902 −1.79570
\(801\) 9.69305 0.342487
\(802\) 8.54300 0.301664
\(803\) 23.2840 0.821676
\(804\) −2.87115 −0.101258
\(805\) −9.29174 −0.327491
\(806\) 0 0
\(807\) −12.0378 −0.423751
\(808\) 9.25276 0.325511
\(809\) 36.7478 1.29199 0.645993 0.763344i \(-0.276444\pi\)
0.645993 + 0.763344i \(0.276444\pi\)
\(810\) −5.96688 −0.209655
\(811\) −39.4301 −1.38458 −0.692289 0.721620i \(-0.743398\pi\)
−0.692289 + 0.721620i \(0.743398\pi\)
\(812\) −5.69788 −0.199956
\(813\) −12.4749 −0.437515
\(814\) −29.5483 −1.03567
\(815\) −3.87387 −0.135696
\(816\) −1.62197 −0.0567803
\(817\) 27.1929 0.951359
\(818\) 2.37743 0.0831248
\(819\) 4.85500 0.169648
\(820\) −4.27297 −0.149218
\(821\) 1.48058 0.0516727 0.0258363 0.999666i \(-0.491775\pi\)
0.0258363 + 0.999666i \(0.491775\pi\)
\(822\) 7.93298 0.276694
\(823\) −38.8652 −1.35476 −0.677378 0.735635i \(-0.736884\pi\)
−0.677378 + 0.735635i \(0.736884\pi\)
\(824\) −15.1782 −0.528758
\(825\) 32.4809 1.13084
\(826\) −0.488073 −0.0169822
\(827\) 33.9363 1.18008 0.590040 0.807374i \(-0.299112\pi\)
0.590040 + 0.807374i \(0.299112\pi\)
\(828\) −10.9397 −0.380182
\(829\) 16.5307 0.574135 0.287067 0.957910i \(-0.407320\pi\)
0.287067 + 0.957910i \(0.407320\pi\)
\(830\) 36.0636 1.25179
\(831\) −10.4415 −0.362210
\(832\) −3.65754 −0.126802
\(833\) −8.39710 −0.290942
\(834\) 11.6437 0.403187
\(835\) −41.8556 −1.44847
\(836\) −23.8409 −0.824555
\(837\) 0 0
\(838\) 27.6122 0.953848
\(839\) −54.0781 −1.86698 −0.933491 0.358600i \(-0.883254\pi\)
−0.933491 + 0.358600i \(0.883254\pi\)
\(840\) −6.20684 −0.214156
\(841\) −5.03279 −0.173545
\(842\) −14.9512 −0.515254
\(843\) 13.8964 0.478617
\(844\) 17.5455 0.603942
\(845\) −16.8075 −0.578194
\(846\) −1.32024 −0.0453907
\(847\) 4.53330 0.155766
\(848\) 4.91160 0.168665
\(849\) 20.4806 0.702894
\(850\) −7.89051 −0.270642
\(851\) 34.1847 1.17184
\(852\) −10.6433 −0.364634
\(853\) 39.5762 1.35506 0.677532 0.735493i \(-0.263050\pi\)
0.677532 + 0.735493i \(0.263050\pi\)
\(854\) −1.21958 −0.0417333
\(855\) 30.7893 1.05297
\(856\) 5.65598 0.193317
\(857\) 12.7250 0.434679 0.217340 0.976096i \(-0.430262\pi\)
0.217340 + 0.976096i \(0.430262\pi\)
\(858\) 7.45110 0.254376
\(859\) −21.1543 −0.721777 −0.360888 0.932609i \(-0.617526\pi\)
−0.360888 + 0.932609i \(0.617526\pi\)
\(860\) 40.4542 1.37948
\(861\) −0.520762 −0.0177475
\(862\) 8.01237 0.272902
\(863\) 9.33974 0.317928 0.158964 0.987284i \(-0.449185\pi\)
0.158964 + 0.987284i \(0.449185\pi\)
\(864\) −27.1763 −0.924558
\(865\) −76.5702 −2.60346
\(866\) −16.9591 −0.576292
\(867\) 13.7957 0.468526
\(868\) 0 0
\(869\) 58.0085 1.96780
\(870\) 11.2933 0.382879
\(871\) 6.07235 0.205754
\(872\) 3.58896 0.121538
\(873\) 11.5352 0.390407
\(874\) −8.60055 −0.290918
\(875\) 10.6014 0.358392
\(876\) −7.78356 −0.262982
\(877\) 22.4353 0.757585 0.378792 0.925482i \(-0.376339\pi\)
0.378792 + 0.925482i \(0.376339\pi\)
\(878\) −12.5441 −0.423343
\(879\) −11.1905 −0.377448
\(880\) −20.9595 −0.706543
\(881\) −46.4315 −1.56432 −0.782158 0.623080i \(-0.785881\pi\)
−0.782158 + 0.623080i \(0.785881\pi\)
\(882\) −9.67080 −0.325633
\(883\) 36.5396 1.22965 0.614827 0.788662i \(-0.289226\pi\)
0.614827 + 0.788662i \(0.289226\pi\)
\(884\) 5.80488 0.195239
\(885\) −3.10234 −0.104284
\(886\) −12.2456 −0.411400
\(887\) 28.6850 0.963150 0.481575 0.876405i \(-0.340065\pi\)
0.481575 + 0.876405i \(0.340065\pi\)
\(888\) 22.8353 0.766301
\(889\) −1.09319 −0.0366644
\(890\) 11.3367 0.380008
\(891\) −9.60662 −0.321834
\(892\) −14.3677 −0.481066
\(893\) 3.32865 0.111389
\(894\) −12.5282 −0.419005
\(895\) −0.488140 −0.0163167
\(896\) 8.20514 0.274114
\(897\) −8.62027 −0.287822
\(898\) 6.34235 0.211647
\(899\) 0 0
\(900\) 29.1430 0.971434
\(901\) 4.67889 0.155877
\(902\) 2.14514 0.0714254
\(903\) 4.93029 0.164070
\(904\) 15.5059 0.515719
\(905\) 28.6665 0.952906
\(906\) 9.56473 0.317767
\(907\) −22.1896 −0.736794 −0.368397 0.929669i \(-0.620093\pi\)
−0.368397 + 0.929669i \(0.620093\pi\)
\(908\) −33.1799 −1.10111
\(909\) −8.32179 −0.276017
\(910\) 5.67829 0.188233
\(911\) −28.8324 −0.955261 −0.477631 0.878561i \(-0.658504\pi\)
−0.477631 + 0.878561i \(0.658504\pi\)
\(912\) 4.70969 0.155953
\(913\) 58.0620 1.92157
\(914\) 21.5121 0.711557
\(915\) −7.75204 −0.256275
\(916\) −25.8510 −0.854139
\(917\) 4.80396 0.158641
\(918\) −4.22198 −0.139346
\(919\) 48.0623 1.58543 0.792715 0.609592i \(-0.208667\pi\)
0.792715 + 0.609592i \(0.208667\pi\)
\(920\) −29.5793 −0.975201
\(921\) −27.7217 −0.913463
\(922\) 4.59786 0.151423
\(923\) 22.5101 0.740928
\(924\) −4.32255 −0.142201
\(925\) −91.0668 −2.99426
\(926\) −24.3518 −0.800251
\(927\) 13.6510 0.448359
\(928\) −28.4312 −0.933300
\(929\) 7.01617 0.230193 0.115097 0.993354i \(-0.463282\pi\)
0.115097 + 0.993354i \(0.463282\pi\)
\(930\) 0 0
\(931\) 24.3825 0.799105
\(932\) 14.9961 0.491214
\(933\) −2.14899 −0.0703547
\(934\) −24.7827 −0.810916
\(935\) −19.9664 −0.652972
\(936\) 15.4554 0.505176
\(937\) −12.8807 −0.420793 −0.210396 0.977616i \(-0.567475\pi\)
−0.210396 + 0.977616i \(0.567475\pi\)
\(938\) 1.09845 0.0358656
\(939\) −9.69683 −0.316444
\(940\) 4.95195 0.161515
\(941\) −50.0392 −1.63123 −0.815616 0.578593i \(-0.803602\pi\)
−0.815616 + 0.578593i \(0.803602\pi\)
\(942\) 9.42462 0.307071
\(943\) −2.48174 −0.0808165
\(944\) 1.27370 0.0414555
\(945\) 13.2445 0.430844
\(946\) −20.3090 −0.660304
\(947\) 51.8679 1.68548 0.842741 0.538320i \(-0.180941\pi\)
0.842741 + 0.538320i \(0.180941\pi\)
\(948\) −19.3915 −0.629807
\(949\) 16.4619 0.534374
\(950\) 22.9115 0.743349
\(951\) −7.89271 −0.255939
\(952\) 2.42756 0.0786777
\(953\) 18.7352 0.606893 0.303447 0.952848i \(-0.401863\pi\)
0.303447 + 0.952848i \(0.401863\pi\)
\(954\) 5.38861 0.174463
\(955\) −78.2385 −2.53174
\(956\) −0.900482 −0.0291237
\(957\) 18.1821 0.587743
\(958\) −22.9218 −0.740569
\(959\) 9.73320 0.314301
\(960\) −4.20549 −0.135731
\(961\) 0 0
\(962\) −20.8907 −0.673542
\(963\) −5.08690 −0.163923
\(964\) −23.4338 −0.754751
\(965\) 20.9965 0.675902
\(966\) −1.55935 −0.0501712
\(967\) −47.7846 −1.53665 −0.768324 0.640061i \(-0.778909\pi\)
−0.768324 + 0.640061i \(0.778909\pi\)
\(968\) 14.4313 0.463839
\(969\) 4.48655 0.144129
\(970\) 13.4913 0.433178
\(971\) −31.1007 −0.998068 −0.499034 0.866583i \(-0.666312\pi\)
−0.499034 + 0.866583i \(0.666312\pi\)
\(972\) 24.6147 0.789517
\(973\) 14.2860 0.457987
\(974\) −19.6611 −0.629983
\(975\) 22.9641 0.735439
\(976\) 3.18269 0.101876
\(977\) −22.0791 −0.706375 −0.353187 0.935553i \(-0.614902\pi\)
−0.353187 + 0.935553i \(0.614902\pi\)
\(978\) −0.650117 −0.0207884
\(979\) 18.2520 0.583337
\(980\) 36.2733 1.15871
\(981\) −3.22786 −0.103058
\(982\) 19.2807 0.615273
\(983\) −37.5769 −1.19852 −0.599258 0.800556i \(-0.704538\pi\)
−0.599258 + 0.800556i \(0.704538\pi\)
\(984\) −1.65779 −0.0528484
\(985\) 59.0044 1.88004
\(986\) −4.41693 −0.140664
\(987\) 0.603511 0.0192100
\(988\) −16.8555 −0.536246
\(989\) 23.4958 0.747122
\(990\) −22.9950 −0.730829
\(991\) −6.77397 −0.215182 −0.107591 0.994195i \(-0.534314\pi\)
−0.107591 + 0.994195i \(0.534314\pi\)
\(992\) 0 0
\(993\) 29.2099 0.926948
\(994\) 4.07192 0.129154
\(995\) −15.7994 −0.500875
\(996\) −19.4094 −0.615010
\(997\) −29.5733 −0.936595 −0.468298 0.883571i \(-0.655132\pi\)
−0.468298 + 0.883571i \(0.655132\pi\)
\(998\) 28.4795 0.901502
\(999\) −48.7272 −1.54166
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.a.i.1.3 8
3.2 odd 2 8649.2.a.bf.1.6 8
31.2 even 5 961.2.d.p.531.1 16
31.3 odd 30 961.2.g.m.846.1 16
31.4 even 5 961.2.d.o.388.4 16
31.5 even 3 961.2.c.j.521.3 16
31.6 odd 6 961.2.c.i.439.3 16
31.7 even 15 31.2.g.a.18.2 16
31.8 even 5 961.2.d.o.374.4 16
31.9 even 15 31.2.g.a.19.2 yes 16
31.10 even 15 961.2.g.s.844.1 16
31.11 odd 30 961.2.g.j.338.2 16
31.12 odd 30 961.2.g.n.547.1 16
31.13 odd 30 961.2.g.n.448.1 16
31.14 even 15 961.2.g.k.816.2 16
31.15 odd 10 961.2.d.q.628.1 16
31.16 even 5 961.2.d.p.628.1 16
31.17 odd 30 961.2.g.j.816.2 16
31.18 even 15 961.2.g.t.448.1 16
31.19 even 15 961.2.g.t.547.1 16
31.20 even 15 961.2.g.k.338.2 16
31.21 odd 30 961.2.g.m.844.1 16
31.22 odd 30 961.2.g.l.732.2 16
31.23 odd 10 961.2.d.n.374.4 16
31.24 odd 30 961.2.g.l.235.2 16
31.25 even 3 961.2.c.j.439.3 16
31.26 odd 6 961.2.c.i.521.3 16
31.27 odd 10 961.2.d.n.388.4 16
31.28 even 15 961.2.g.s.846.1 16
31.29 odd 10 961.2.d.q.531.1 16
31.30 odd 2 961.2.a.j.1.3 8
93.38 odd 30 279.2.y.c.235.1 16
93.71 odd 30 279.2.y.c.19.1 16
93.92 even 2 8649.2.a.be.1.6 8
124.7 odd 30 496.2.bg.c.49.1 16
124.71 odd 30 496.2.bg.c.81.1 16
155.7 odd 60 775.2.ck.a.49.3 32
155.9 even 30 775.2.bl.a.701.1 16
155.38 odd 60 775.2.ck.a.49.2 32
155.69 even 30 775.2.bl.a.576.1 16
155.102 odd 60 775.2.ck.a.174.2 32
155.133 odd 60 775.2.ck.a.174.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.18.2 16 31.7 even 15
31.2.g.a.19.2 yes 16 31.9 even 15
279.2.y.c.19.1 16 93.71 odd 30
279.2.y.c.235.1 16 93.38 odd 30
496.2.bg.c.49.1 16 124.7 odd 30
496.2.bg.c.81.1 16 124.71 odd 30
775.2.bl.a.576.1 16 155.69 even 30
775.2.bl.a.701.1 16 155.9 even 30
775.2.ck.a.49.2 32 155.38 odd 60
775.2.ck.a.49.3 32 155.7 odd 60
775.2.ck.a.174.2 32 155.102 odd 60
775.2.ck.a.174.3 32 155.133 odd 60
961.2.a.i.1.3 8 1.1 even 1 trivial
961.2.a.j.1.3 8 31.30 odd 2
961.2.c.i.439.3 16 31.6 odd 6
961.2.c.i.521.3 16 31.26 odd 6
961.2.c.j.439.3 16 31.25 even 3
961.2.c.j.521.3 16 31.5 even 3
961.2.d.n.374.4 16 31.23 odd 10
961.2.d.n.388.4 16 31.27 odd 10
961.2.d.o.374.4 16 31.8 even 5
961.2.d.o.388.4 16 31.4 even 5
961.2.d.p.531.1 16 31.2 even 5
961.2.d.p.628.1 16 31.16 even 5
961.2.d.q.531.1 16 31.29 odd 10
961.2.d.q.628.1 16 31.15 odd 10
961.2.g.j.338.2 16 31.11 odd 30
961.2.g.j.816.2 16 31.17 odd 30
961.2.g.k.338.2 16 31.20 even 15
961.2.g.k.816.2 16 31.14 even 15
961.2.g.l.235.2 16 31.24 odd 30
961.2.g.l.732.2 16 31.22 odd 30
961.2.g.m.844.1 16 31.21 odd 30
961.2.g.m.846.1 16 31.3 odd 30
961.2.g.n.448.1 16 31.13 odd 30
961.2.g.n.547.1 16 31.12 odd 30
961.2.g.s.844.1 16 31.10 even 15
961.2.g.s.846.1 16 31.28 even 15
961.2.g.t.448.1 16 31.18 even 15
961.2.g.t.547.1 16 31.19 even 15
8649.2.a.be.1.6 8 93.92 even 2
8649.2.a.bf.1.6 8 3.2 odd 2