Properties

Label 8649.2.a.be.1.6
Level $8649$
Weight $2$
Character 8649.1
Self dual yes
Analytic conductor $69.063$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8649,2,Mod(1,8649)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8649, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8649.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8649 = 3^{2} \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8649.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.0626127082\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.2051578125.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 9x^{6} + 19x^{5} + 14x^{4} - 28x^{3} - 11x^{2} + 6x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-2.73366\) of defining polynomial
Character \(\chi\) \(=\) 8649.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.689493 q^{2} -1.52460 q^{4} -3.70752 q^{5} +0.763394 q^{7} -2.43019 q^{8} -2.55631 q^{10} -4.11562 q^{11} +2.90975 q^{13} +0.526355 q^{14} +1.37360 q^{16} +1.30852 q^{17} -3.79954 q^{19} +5.65248 q^{20} -2.83769 q^{22} -3.28296 q^{23} +8.74568 q^{25} +2.00625 q^{26} -1.16387 q^{28} +4.89563 q^{29} +5.80746 q^{32} +0.902218 q^{34} -2.83030 q^{35} +10.4128 q^{37} -2.61976 q^{38} +9.00995 q^{40} -0.755946 q^{41} +7.15689 q^{43} +6.27468 q^{44} -2.26358 q^{46} +0.876067 q^{47} -6.41723 q^{49} +6.03008 q^{50} -4.43621 q^{52} +3.57570 q^{53} +15.2587 q^{55} -1.85519 q^{56} +3.37550 q^{58} -0.927270 q^{59} -2.31704 q^{61} +1.25699 q^{64} -10.7879 q^{65} -2.08690 q^{67} -1.99498 q^{68} -1.95147 q^{70} +7.73608 q^{71} +5.65748 q^{73} +7.17954 q^{74} +5.79278 q^{76} -3.14184 q^{77} +14.0947 q^{79} -5.09266 q^{80} -0.521219 q^{82} -14.1077 q^{83} -4.85137 q^{85} +4.93462 q^{86} +10.0017 q^{88} -4.43481 q^{89} +2.22129 q^{91} +5.00520 q^{92} +0.604042 q^{94} +14.0869 q^{95} -5.27764 q^{97} -4.42463 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 8 q^{4} - 3 q^{5} - 2 q^{7} + 9 q^{8} - 13 q^{10} - 18 q^{11} + 8 q^{13} + 9 q^{14} + 4 q^{16} - 14 q^{17} - 6 q^{19} + 7 q^{20} + 4 q^{22} - 22 q^{23} + 13 q^{25} - 9 q^{26} - 5 q^{28}+ \cdots - 10 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.689493 0.487545 0.243772 0.969832i \(-0.421615\pi\)
0.243772 + 0.969832i \(0.421615\pi\)
\(3\) 0 0
\(4\) −1.52460 −0.762300
\(5\) −3.70752 −1.65805 −0.829026 0.559210i \(-0.811104\pi\)
−0.829026 + 0.559210i \(0.811104\pi\)
\(6\) 0 0
\(7\) 0.763394 0.288536 0.144268 0.989539i \(-0.453917\pi\)
0.144268 + 0.989539i \(0.453917\pi\)
\(8\) −2.43019 −0.859200
\(9\) 0 0
\(10\) −2.55631 −0.808375
\(11\) −4.11562 −1.24091 −0.620453 0.784243i \(-0.713051\pi\)
−0.620453 + 0.784243i \(0.713051\pi\)
\(12\) 0 0
\(13\) 2.90975 0.807020 0.403510 0.914975i \(-0.367790\pi\)
0.403510 + 0.914975i \(0.367790\pi\)
\(14\) 0.526355 0.140674
\(15\) 0 0
\(16\) 1.37360 0.343401
\(17\) 1.30852 0.317364 0.158682 0.987330i \(-0.449276\pi\)
0.158682 + 0.987330i \(0.449276\pi\)
\(18\) 0 0
\(19\) −3.79954 −0.871675 −0.435837 0.900025i \(-0.643548\pi\)
−0.435837 + 0.900025i \(0.643548\pi\)
\(20\) 5.65248 1.26393
\(21\) 0 0
\(22\) −2.83769 −0.604998
\(23\) −3.28296 −0.684544 −0.342272 0.939601i \(-0.611196\pi\)
−0.342272 + 0.939601i \(0.611196\pi\)
\(24\) 0 0
\(25\) 8.74568 1.74914
\(26\) 2.00625 0.393458
\(27\) 0 0
\(28\) −1.16387 −0.219951
\(29\) 4.89563 0.909096 0.454548 0.890722i \(-0.349801\pi\)
0.454548 + 0.890722i \(0.349801\pi\)
\(30\) 0 0
\(31\) 0 0
\(32\) 5.80746 1.02662
\(33\) 0 0
\(34\) 0.902218 0.154729
\(35\) −2.83030 −0.478407
\(36\) 0 0
\(37\) 10.4128 1.71185 0.855925 0.517099i \(-0.172988\pi\)
0.855925 + 0.517099i \(0.172988\pi\)
\(38\) −2.61976 −0.424981
\(39\) 0 0
\(40\) 9.00995 1.42460
\(41\) −0.755946 −0.118059 −0.0590295 0.998256i \(-0.518801\pi\)
−0.0590295 + 0.998256i \(0.518801\pi\)
\(42\) 0 0
\(43\) 7.15689 1.09142 0.545708 0.837976i \(-0.316261\pi\)
0.545708 + 0.837976i \(0.316261\pi\)
\(44\) 6.27468 0.945943
\(45\) 0 0
\(46\) −2.26358 −0.333746
\(47\) 0.876067 0.127787 0.0638937 0.997957i \(-0.479648\pi\)
0.0638937 + 0.997957i \(0.479648\pi\)
\(48\) 0 0
\(49\) −6.41723 −0.916747
\(50\) 6.03008 0.852782
\(51\) 0 0
\(52\) −4.43621 −0.615191
\(53\) 3.57570 0.491161 0.245580 0.969376i \(-0.421021\pi\)
0.245580 + 0.969376i \(0.421021\pi\)
\(54\) 0 0
\(55\) 15.2587 2.05749
\(56\) −1.85519 −0.247910
\(57\) 0 0
\(58\) 3.37550 0.443225
\(59\) −0.927270 −0.120720 −0.0603601 0.998177i \(-0.519225\pi\)
−0.0603601 + 0.998177i \(0.519225\pi\)
\(60\) 0 0
\(61\) −2.31704 −0.296666 −0.148333 0.988937i \(-0.547391\pi\)
−0.148333 + 0.988937i \(0.547391\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.25699 0.157124
\(65\) −10.7879 −1.33808
\(66\) 0 0
\(67\) −2.08690 −0.254955 −0.127478 0.991841i \(-0.540688\pi\)
−0.127478 + 0.991841i \(0.540688\pi\)
\(68\) −1.99498 −0.241926
\(69\) 0 0
\(70\) −1.95147 −0.233245
\(71\) 7.73608 0.918104 0.459052 0.888409i \(-0.348189\pi\)
0.459052 + 0.888409i \(0.348189\pi\)
\(72\) 0 0
\(73\) 5.65748 0.662158 0.331079 0.943603i \(-0.392587\pi\)
0.331079 + 0.943603i \(0.392587\pi\)
\(74\) 7.17954 0.834604
\(75\) 0 0
\(76\) 5.79278 0.664477
\(77\) −3.14184 −0.358046
\(78\) 0 0
\(79\) 14.0947 1.58578 0.792890 0.609365i \(-0.208576\pi\)
0.792890 + 0.609365i \(0.208576\pi\)
\(80\) −5.09266 −0.569377
\(81\) 0 0
\(82\) −0.521219 −0.0575590
\(83\) −14.1077 −1.54852 −0.774261 0.632866i \(-0.781878\pi\)
−0.774261 + 0.632866i \(0.781878\pi\)
\(84\) 0 0
\(85\) −4.85137 −0.526205
\(86\) 4.93462 0.532114
\(87\) 0 0
\(88\) 10.0017 1.06619
\(89\) −4.43481 −0.470089 −0.235045 0.971985i \(-0.575524\pi\)
−0.235045 + 0.971985i \(0.575524\pi\)
\(90\) 0 0
\(91\) 2.22129 0.232854
\(92\) 5.00520 0.521828
\(93\) 0 0
\(94\) 0.604042 0.0623021
\(95\) 14.0869 1.44528
\(96\) 0 0
\(97\) −5.27764 −0.535863 −0.267932 0.963438i \(-0.586340\pi\)
−0.267932 + 0.963438i \(0.586340\pi\)
\(98\) −4.42463 −0.446955
\(99\) 0 0
\(100\) −13.3337 −1.33337
\(101\) −3.80743 −0.378853 −0.189427 0.981895i \(-0.560663\pi\)
−0.189427 + 0.981895i \(0.560663\pi\)
\(102\) 0 0
\(103\) −6.24569 −0.615406 −0.307703 0.951482i \(-0.599560\pi\)
−0.307703 + 0.951482i \(0.599560\pi\)
\(104\) −7.07124 −0.693392
\(105\) 0 0
\(106\) 2.46542 0.239463
\(107\) −2.32738 −0.224997 −0.112498 0.993652i \(-0.535885\pi\)
−0.112498 + 0.993652i \(0.535885\pi\)
\(108\) 0 0
\(109\) 1.47683 0.141454 0.0707272 0.997496i \(-0.477468\pi\)
0.0707272 + 0.997496i \(0.477468\pi\)
\(110\) 10.5208 1.00312
\(111\) 0 0
\(112\) 1.04860 0.0990835
\(113\) −6.38055 −0.600231 −0.300116 0.953903i \(-0.597025\pi\)
−0.300116 + 0.953903i \(0.597025\pi\)
\(114\) 0 0
\(115\) 12.1716 1.13501
\(116\) −7.46388 −0.693004
\(117\) 0 0
\(118\) −0.639346 −0.0588566
\(119\) 0.998919 0.0915708
\(120\) 0 0
\(121\) 5.93835 0.539850
\(122\) −1.59758 −0.144638
\(123\) 0 0
\(124\) 0 0
\(125\) −13.8872 −1.24211
\(126\) 0 0
\(127\) 1.43201 0.127071 0.0635354 0.997980i \(-0.479762\pi\)
0.0635354 + 0.997980i \(0.479762\pi\)
\(128\) −10.7482 −0.950019
\(129\) 0 0
\(130\) −7.43821 −0.652374
\(131\) −6.29290 −0.549813 −0.274907 0.961471i \(-0.588647\pi\)
−0.274907 + 0.961471i \(0.588647\pi\)
\(132\) 0 0
\(133\) −2.90055 −0.251509
\(134\) −1.43890 −0.124302
\(135\) 0 0
\(136\) −3.17996 −0.272679
\(137\) 12.7499 1.08930 0.544649 0.838664i \(-0.316663\pi\)
0.544649 + 0.838664i \(0.316663\pi\)
\(138\) 0 0
\(139\) −18.7137 −1.58728 −0.793640 0.608388i \(-0.791816\pi\)
−0.793640 + 0.608388i \(0.791816\pi\)
\(140\) 4.31507 0.364690
\(141\) 0 0
\(142\) 5.33397 0.447617
\(143\) −11.9754 −1.00144
\(144\) 0 0
\(145\) −18.1506 −1.50733
\(146\) 3.90079 0.322832
\(147\) 0 0
\(148\) −15.8753 −1.30494
\(149\) 20.1353 1.64955 0.824774 0.565462i \(-0.191302\pi\)
0.824774 + 0.565462i \(0.191302\pi\)
\(150\) 0 0
\(151\) −15.3725 −1.25099 −0.625497 0.780227i \(-0.715104\pi\)
−0.625497 + 0.780227i \(0.715104\pi\)
\(152\) 9.23359 0.748943
\(153\) 0 0
\(154\) −2.16628 −0.174564
\(155\) 0 0
\(156\) 0 0
\(157\) 15.1473 1.20888 0.604442 0.796649i \(-0.293396\pi\)
0.604442 + 0.796649i \(0.293396\pi\)
\(158\) 9.71821 0.773139
\(159\) 0 0
\(160\) −21.5313 −1.70220
\(161\) −2.50619 −0.197515
\(162\) 0 0
\(163\) −1.04487 −0.0818405 −0.0409202 0.999162i \(-0.513029\pi\)
−0.0409202 + 0.999162i \(0.513029\pi\)
\(164\) 1.15251 0.0899963
\(165\) 0 0
\(166\) −9.72717 −0.754975
\(167\) −11.2894 −0.873600 −0.436800 0.899559i \(-0.643888\pi\)
−0.436800 + 0.899559i \(0.643888\pi\)
\(168\) 0 0
\(169\) −4.53335 −0.348719
\(170\) −3.34499 −0.256549
\(171\) 0 0
\(172\) −10.9114 −0.831986
\(173\) 20.6527 1.57019 0.785097 0.619373i \(-0.212613\pi\)
0.785097 + 0.619373i \(0.212613\pi\)
\(174\) 0 0
\(175\) 6.67640 0.504688
\(176\) −5.65324 −0.426129
\(177\) 0 0
\(178\) −3.05777 −0.229190
\(179\) −0.131662 −0.00984091 −0.00492045 0.999988i \(-0.501566\pi\)
−0.00492045 + 0.999988i \(0.501566\pi\)
\(180\) 0 0
\(181\) −7.73199 −0.574714 −0.287357 0.957824i \(-0.592777\pi\)
−0.287357 + 0.957824i \(0.592777\pi\)
\(182\) 1.53156 0.113527
\(183\) 0 0
\(184\) 7.97820 0.588161
\(185\) −38.6056 −2.83834
\(186\) 0 0
\(187\) −5.38539 −0.393819
\(188\) −1.33565 −0.0974124
\(189\) 0 0
\(190\) 9.71279 0.704640
\(191\) 21.1027 1.52694 0.763468 0.645846i \(-0.223495\pi\)
0.763468 + 0.645846i \(0.223495\pi\)
\(192\) 0 0
\(193\) 5.66324 0.407649 0.203824 0.979007i \(-0.434663\pi\)
0.203824 + 0.979007i \(0.434663\pi\)
\(194\) −3.63889 −0.261257
\(195\) 0 0
\(196\) 9.78371 0.698836
\(197\) 15.9148 1.13388 0.566941 0.823758i \(-0.308127\pi\)
0.566941 + 0.823758i \(0.308127\pi\)
\(198\) 0 0
\(199\) 4.26145 0.302086 0.151043 0.988527i \(-0.451737\pi\)
0.151043 + 0.988527i \(0.451737\pi\)
\(200\) −21.2536 −1.50286
\(201\) 0 0
\(202\) −2.62520 −0.184708
\(203\) 3.73730 0.262307
\(204\) 0 0
\(205\) 2.80268 0.195748
\(206\) −4.30636 −0.300038
\(207\) 0 0
\(208\) 3.99685 0.277131
\(209\) 15.6375 1.08167
\(210\) 0 0
\(211\) −11.5083 −0.792263 −0.396131 0.918194i \(-0.629648\pi\)
−0.396131 + 0.918194i \(0.629648\pi\)
\(212\) −5.45152 −0.374412
\(213\) 0 0
\(214\) −1.60471 −0.109696
\(215\) −26.5343 −1.80962
\(216\) 0 0
\(217\) 0 0
\(218\) 1.01826 0.0689654
\(219\) 0 0
\(220\) −23.2635 −1.56842
\(221\) 3.80748 0.256119
\(222\) 0 0
\(223\) −9.42391 −0.631072 −0.315536 0.948914i \(-0.602184\pi\)
−0.315536 + 0.948914i \(0.602184\pi\)
\(224\) 4.43338 0.296218
\(225\) 0 0
\(226\) −4.39934 −0.292640
\(227\) −21.7630 −1.44446 −0.722231 0.691652i \(-0.756883\pi\)
−0.722231 + 0.691652i \(0.756883\pi\)
\(228\) 0 0
\(229\) −16.9559 −1.12048 −0.560238 0.828331i \(-0.689291\pi\)
−0.560238 + 0.828331i \(0.689291\pi\)
\(230\) 8.39224 0.553368
\(231\) 0 0
\(232\) −11.8973 −0.781096
\(233\) 9.83611 0.644385 0.322192 0.946674i \(-0.395580\pi\)
0.322192 + 0.946674i \(0.395580\pi\)
\(234\) 0 0
\(235\) −3.24803 −0.211878
\(236\) 1.41372 0.0920250
\(237\) 0 0
\(238\) 0.688748 0.0446449
\(239\) 0.590635 0.0382050 0.0191025 0.999818i \(-0.493919\pi\)
0.0191025 + 0.999818i \(0.493919\pi\)
\(240\) 0 0
\(241\) −15.3704 −0.990097 −0.495049 0.868865i \(-0.664850\pi\)
−0.495049 + 0.868865i \(0.664850\pi\)
\(242\) 4.09445 0.263201
\(243\) 0 0
\(244\) 3.53256 0.226149
\(245\) 23.7920 1.52001
\(246\) 0 0
\(247\) −11.0557 −0.703459
\(248\) 0 0
\(249\) 0 0
\(250\) −9.57510 −0.605582
\(251\) −6.05150 −0.381967 −0.190984 0.981593i \(-0.561168\pi\)
−0.190984 + 0.981593i \(0.561168\pi\)
\(252\) 0 0
\(253\) 13.5114 0.849455
\(254\) 0.987363 0.0619527
\(255\) 0 0
\(256\) −9.92482 −0.620301
\(257\) 4.52784 0.282439 0.141219 0.989978i \(-0.454898\pi\)
0.141219 + 0.989978i \(0.454898\pi\)
\(258\) 0 0
\(259\) 7.94906 0.493930
\(260\) 16.4473 1.02002
\(261\) 0 0
\(262\) −4.33891 −0.268059
\(263\) −2.50886 −0.154703 −0.0773516 0.997004i \(-0.524646\pi\)
−0.0773516 + 0.997004i \(0.524646\pi\)
\(264\) 0 0
\(265\) −13.2570 −0.814370
\(266\) −1.99991 −0.122622
\(267\) 0 0
\(268\) 3.18168 0.194352
\(269\) 13.3398 0.813340 0.406670 0.913575i \(-0.366690\pi\)
0.406670 + 0.913575i \(0.366690\pi\)
\(270\) 0 0
\(271\) −13.8242 −0.839759 −0.419879 0.907580i \(-0.637928\pi\)
−0.419879 + 0.907580i \(0.637928\pi\)
\(272\) 1.79739 0.108983
\(273\) 0 0
\(274\) 8.79097 0.531082
\(275\) −35.9939 −2.17051
\(276\) 0 0
\(277\) −11.5707 −0.695219 −0.347609 0.937639i \(-0.613006\pi\)
−0.347609 + 0.937639i \(0.613006\pi\)
\(278\) −12.9030 −0.773870
\(279\) 0 0
\(280\) 6.87814 0.411048
\(281\) 15.3993 0.918648 0.459324 0.888269i \(-0.348092\pi\)
0.459324 + 0.888269i \(0.348092\pi\)
\(282\) 0 0
\(283\) −22.6957 −1.34912 −0.674560 0.738220i \(-0.735667\pi\)
−0.674560 + 0.738220i \(0.735667\pi\)
\(284\) −11.7944 −0.699871
\(285\) 0 0
\(286\) −8.25698 −0.488245
\(287\) −0.577084 −0.0340642
\(288\) 0 0
\(289\) −15.2878 −0.899280
\(290\) −12.5147 −0.734890
\(291\) 0 0
\(292\) −8.62539 −0.504763
\(293\) −12.4009 −0.724466 −0.362233 0.932088i \(-0.617986\pi\)
−0.362233 + 0.932088i \(0.617986\pi\)
\(294\) 0 0
\(295\) 3.43787 0.200160
\(296\) −25.3050 −1.47082
\(297\) 0 0
\(298\) 13.8831 0.804229
\(299\) −9.55259 −0.552441
\(300\) 0 0
\(301\) 5.46353 0.314912
\(302\) −10.5992 −0.609915
\(303\) 0 0
\(304\) −5.21907 −0.299334
\(305\) 8.59046 0.491888
\(306\) 0 0
\(307\) 30.7200 1.75328 0.876641 0.481145i \(-0.159779\pi\)
0.876641 + 0.481145i \(0.159779\pi\)
\(308\) 4.79005 0.272938
\(309\) 0 0
\(310\) 0 0
\(311\) −2.38141 −0.135037 −0.0675187 0.997718i \(-0.521508\pi\)
−0.0675187 + 0.997718i \(0.521508\pi\)
\(312\) 0 0
\(313\) −10.7456 −0.607377 −0.303688 0.952771i \(-0.598218\pi\)
−0.303688 + 0.952771i \(0.598218\pi\)
\(314\) 10.4439 0.589385
\(315\) 0 0
\(316\) −21.4888 −1.20884
\(317\) −8.74635 −0.491244 −0.245622 0.969366i \(-0.578992\pi\)
−0.245622 + 0.969366i \(0.578992\pi\)
\(318\) 0 0
\(319\) −20.1486 −1.12810
\(320\) −4.66033 −0.260520
\(321\) 0 0
\(322\) −1.72800 −0.0962977
\(323\) −4.97179 −0.276638
\(324\) 0 0
\(325\) 25.4477 1.41159
\(326\) −0.720430 −0.0399009
\(327\) 0 0
\(328\) 1.83709 0.101436
\(329\) 0.668784 0.0368713
\(330\) 0 0
\(331\) 32.3691 1.77917 0.889583 0.456773i \(-0.150995\pi\)
0.889583 + 0.456773i \(0.150995\pi\)
\(332\) 21.5086 1.18044
\(333\) 0 0
\(334\) −7.78396 −0.425919
\(335\) 7.73721 0.422729
\(336\) 0 0
\(337\) −27.7338 −1.51076 −0.755378 0.655289i \(-0.772547\pi\)
−0.755378 + 0.655289i \(0.772547\pi\)
\(338\) −3.12571 −0.170016
\(339\) 0 0
\(340\) 7.39640 0.401126
\(341\) 0 0
\(342\) 0 0
\(343\) −10.2426 −0.553050
\(344\) −17.3926 −0.937745
\(345\) 0 0
\(346\) 14.2399 0.765540
\(347\) −25.9161 −1.39125 −0.695624 0.718407i \(-0.744872\pi\)
−0.695624 + 0.718407i \(0.744872\pi\)
\(348\) 0 0
\(349\) 5.59393 0.299436 0.149718 0.988729i \(-0.452163\pi\)
0.149718 + 0.988729i \(0.452163\pi\)
\(350\) 4.60333 0.246058
\(351\) 0 0
\(352\) −23.9013 −1.27394
\(353\) 11.6690 0.621077 0.310538 0.950561i \(-0.399491\pi\)
0.310538 + 0.950561i \(0.399491\pi\)
\(354\) 0 0
\(355\) −28.6817 −1.52226
\(356\) 6.76131 0.358349
\(357\) 0 0
\(358\) −0.0907803 −0.00479789
\(359\) −26.1998 −1.38278 −0.691388 0.722484i \(-0.743000\pi\)
−0.691388 + 0.722484i \(0.743000\pi\)
\(360\) 0 0
\(361\) −4.56348 −0.240183
\(362\) −5.33115 −0.280199
\(363\) 0 0
\(364\) −3.38657 −0.177505
\(365\) −20.9752 −1.09789
\(366\) 0 0
\(367\) −27.0146 −1.41015 −0.705076 0.709132i \(-0.749087\pi\)
−0.705076 + 0.709132i \(0.749087\pi\)
\(368\) −4.50948 −0.235073
\(369\) 0 0
\(370\) −26.6183 −1.38382
\(371\) 2.72967 0.141717
\(372\) 0 0
\(373\) −12.4058 −0.642351 −0.321175 0.947020i \(-0.604078\pi\)
−0.321175 + 0.947020i \(0.604078\pi\)
\(374\) −3.71319 −0.192004
\(375\) 0 0
\(376\) −2.12900 −0.109795
\(377\) 14.2451 0.733658
\(378\) 0 0
\(379\) −4.63901 −0.238290 −0.119145 0.992877i \(-0.538015\pi\)
−0.119145 + 0.992877i \(0.538015\pi\)
\(380\) −21.4768 −1.10174
\(381\) 0 0
\(382\) 14.5501 0.744450
\(383\) −5.02133 −0.256578 −0.128289 0.991737i \(-0.540949\pi\)
−0.128289 + 0.991737i \(0.540949\pi\)
\(384\) 0 0
\(385\) 11.6484 0.593659
\(386\) 3.90476 0.198747
\(387\) 0 0
\(388\) 8.04629 0.408488
\(389\) 18.6018 0.943151 0.471575 0.881826i \(-0.343686\pi\)
0.471575 + 0.881826i \(0.343686\pi\)
\(390\) 0 0
\(391\) −4.29583 −0.217249
\(392\) 15.5951 0.787670
\(393\) 0 0
\(394\) 10.9731 0.552819
\(395\) −52.2564 −2.62930
\(396\) 0 0
\(397\) 32.5588 1.63408 0.817040 0.576581i \(-0.195614\pi\)
0.817040 + 0.576581i \(0.195614\pi\)
\(398\) 2.93824 0.147281
\(399\) 0 0
\(400\) 12.0131 0.600655
\(401\) −12.3903 −0.618740 −0.309370 0.950942i \(-0.600118\pi\)
−0.309370 + 0.950942i \(0.600118\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 5.80481 0.288800
\(405\) 0 0
\(406\) 2.57684 0.127886
\(407\) −42.8551 −2.12425
\(408\) 0 0
\(409\) 3.44808 0.170497 0.0852484 0.996360i \(-0.472832\pi\)
0.0852484 + 0.996360i \(0.472832\pi\)
\(410\) 1.93243 0.0954358
\(411\) 0 0
\(412\) 9.52218 0.469124
\(413\) −0.707872 −0.0348321
\(414\) 0 0
\(415\) 52.3046 2.56753
\(416\) 16.8983 0.828506
\(417\) 0 0
\(418\) 10.7819 0.527361
\(419\) 40.0471 1.95643 0.978216 0.207592i \(-0.0665626\pi\)
0.978216 + 0.207592i \(0.0665626\pi\)
\(420\) 0 0
\(421\) 21.6844 1.05683 0.528417 0.848985i \(-0.322786\pi\)
0.528417 + 0.848985i \(0.322786\pi\)
\(422\) −7.93488 −0.386264
\(423\) 0 0
\(424\) −8.68963 −0.422006
\(425\) 11.4439 0.555112
\(426\) 0 0
\(427\) −1.76881 −0.0855989
\(428\) 3.54833 0.171515
\(429\) 0 0
\(430\) −18.2952 −0.882273
\(431\) 11.6207 0.559748 0.279874 0.960037i \(-0.409707\pi\)
0.279874 + 0.960037i \(0.409707\pi\)
\(432\) 0 0
\(433\) −24.5964 −1.18203 −0.591015 0.806661i \(-0.701272\pi\)
−0.591015 + 0.806661i \(0.701272\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −2.25157 −0.107831
\(437\) 12.4737 0.596700
\(438\) 0 0
\(439\) 18.1932 0.868316 0.434158 0.900837i \(-0.357046\pi\)
0.434158 + 0.900837i \(0.357046\pi\)
\(440\) −37.0816 −1.76779
\(441\) 0 0
\(442\) 2.62523 0.124869
\(443\) −17.7603 −0.843819 −0.421909 0.906638i \(-0.638640\pi\)
−0.421909 + 0.906638i \(0.638640\pi\)
\(444\) 0 0
\(445\) 16.4421 0.779432
\(446\) −6.49772 −0.307676
\(447\) 0 0
\(448\) 0.959582 0.0453360
\(449\) −9.19857 −0.434107 −0.217054 0.976160i \(-0.569645\pi\)
−0.217054 + 0.976160i \(0.569645\pi\)
\(450\) 0 0
\(451\) 3.11119 0.146500
\(452\) 9.72778 0.457556
\(453\) 0 0
\(454\) −15.0054 −0.704241
\(455\) −8.23545 −0.386084
\(456\) 0 0
\(457\) 31.1999 1.45947 0.729735 0.683730i \(-0.239644\pi\)
0.729735 + 0.683730i \(0.239644\pi\)
\(458\) −11.6910 −0.546283
\(459\) 0 0
\(460\) −18.5568 −0.865218
\(461\) −6.66847 −0.310582 −0.155291 0.987869i \(-0.549631\pi\)
−0.155291 + 0.987869i \(0.549631\pi\)
\(462\) 0 0
\(463\) −35.3185 −1.64139 −0.820694 0.571368i \(-0.806413\pi\)
−0.820694 + 0.571368i \(0.806413\pi\)
\(464\) 6.72466 0.312184
\(465\) 0 0
\(466\) 6.78192 0.314167
\(467\) −35.9434 −1.66326 −0.831632 0.555327i \(-0.812593\pi\)
−0.831632 + 0.555327i \(0.812593\pi\)
\(468\) 0 0
\(469\) −1.59312 −0.0735637
\(470\) −2.23949 −0.103300
\(471\) 0 0
\(472\) 2.25344 0.103723
\(473\) −29.4551 −1.35434
\(474\) 0 0
\(475\) −33.2296 −1.52468
\(476\) −1.52295 −0.0698044
\(477\) 0 0
\(478\) 0.407239 0.0186267
\(479\) −33.2444 −1.51898 −0.759488 0.650521i \(-0.774550\pi\)
−0.759488 + 0.650521i \(0.774550\pi\)
\(480\) 0 0
\(481\) 30.2986 1.38150
\(482\) −10.5978 −0.482717
\(483\) 0 0
\(484\) −9.05361 −0.411528
\(485\) 19.5669 0.888489
\(486\) 0 0
\(487\) −28.5154 −1.29215 −0.646077 0.763272i \(-0.723592\pi\)
−0.646077 + 0.763272i \(0.723592\pi\)
\(488\) 5.63084 0.254896
\(489\) 0 0
\(490\) 16.4044 0.741075
\(491\) −27.9636 −1.26198 −0.630991 0.775790i \(-0.717351\pi\)
−0.630991 + 0.775790i \(0.717351\pi\)
\(492\) 0 0
\(493\) 6.40605 0.288514
\(494\) −7.62284 −0.342968
\(495\) 0 0
\(496\) 0 0
\(497\) 5.90568 0.264906
\(498\) 0 0
\(499\) 41.3050 1.84906 0.924532 0.381104i \(-0.124456\pi\)
0.924532 + 0.381104i \(0.124456\pi\)
\(500\) 21.1724 0.946857
\(501\) 0 0
\(502\) −4.17247 −0.186226
\(503\) 25.5860 1.14082 0.570412 0.821358i \(-0.306783\pi\)
0.570412 + 0.821358i \(0.306783\pi\)
\(504\) 0 0
\(505\) 14.1161 0.628159
\(506\) 9.31602 0.414148
\(507\) 0 0
\(508\) −2.18325 −0.0968660
\(509\) −24.4678 −1.08452 −0.542258 0.840212i \(-0.682430\pi\)
−0.542258 + 0.840212i \(0.682430\pi\)
\(510\) 0 0
\(511\) 4.31888 0.191056
\(512\) 14.6534 0.647594
\(513\) 0 0
\(514\) 3.12191 0.137702
\(515\) 23.1560 1.02038
\(516\) 0 0
\(517\) −3.60556 −0.158572
\(518\) 5.48082 0.240813
\(519\) 0 0
\(520\) 26.2167 1.14968
\(521\) −14.9656 −0.655654 −0.327827 0.944738i \(-0.606316\pi\)
−0.327827 + 0.944738i \(0.606316\pi\)
\(522\) 0 0
\(523\) 20.9656 0.916763 0.458381 0.888756i \(-0.348429\pi\)
0.458381 + 0.888756i \(0.348429\pi\)
\(524\) 9.59415 0.419123
\(525\) 0 0
\(526\) −1.72984 −0.0754247
\(527\) 0 0
\(528\) 0 0
\(529\) −12.2222 −0.531399
\(530\) −9.14059 −0.397042
\(531\) 0 0
\(532\) 4.42217 0.191726
\(533\) −2.19961 −0.0952759
\(534\) 0 0
\(535\) 8.62882 0.373056
\(536\) 5.07155 0.219058
\(537\) 0 0
\(538\) 9.19768 0.396540
\(539\) 26.4109 1.13760
\(540\) 0 0
\(541\) 1.73130 0.0744345 0.0372172 0.999307i \(-0.488151\pi\)
0.0372172 + 0.999307i \(0.488151\pi\)
\(542\) −9.53167 −0.409420
\(543\) 0 0
\(544\) 7.59920 0.325813
\(545\) −5.47536 −0.234539
\(546\) 0 0
\(547\) −13.1214 −0.561032 −0.280516 0.959849i \(-0.590506\pi\)
−0.280516 + 0.959849i \(0.590506\pi\)
\(548\) −19.4385 −0.830372
\(549\) 0 0
\(550\) −24.8175 −1.05822
\(551\) −18.6012 −0.792436
\(552\) 0 0
\(553\) 10.7598 0.457554
\(554\) −7.97795 −0.338950
\(555\) 0 0
\(556\) 28.5310 1.20998
\(557\) −28.0246 −1.18744 −0.593721 0.804671i \(-0.702342\pi\)
−0.593721 + 0.804671i \(0.702342\pi\)
\(558\) 0 0
\(559\) 20.8248 0.880794
\(560\) −3.88770 −0.164286
\(561\) 0 0
\(562\) 10.6177 0.447882
\(563\) −22.6519 −0.954662 −0.477331 0.878723i \(-0.658396\pi\)
−0.477331 + 0.878723i \(0.658396\pi\)
\(564\) 0 0
\(565\) 23.6560 0.995215
\(566\) −15.6485 −0.657757
\(567\) 0 0
\(568\) −18.8001 −0.788836
\(569\) −46.4420 −1.94695 −0.973475 0.228792i \(-0.926522\pi\)
−0.973475 + 0.228792i \(0.926522\pi\)
\(570\) 0 0
\(571\) 12.4984 0.523040 0.261520 0.965198i \(-0.415776\pi\)
0.261520 + 0.965198i \(0.415776\pi\)
\(572\) 18.2577 0.763395
\(573\) 0 0
\(574\) −0.397896 −0.0166078
\(575\) −28.7117 −1.19736
\(576\) 0 0
\(577\) −30.4843 −1.26908 −0.634539 0.772891i \(-0.718810\pi\)
−0.634539 + 0.772891i \(0.718810\pi\)
\(578\) −10.5408 −0.438440
\(579\) 0 0
\(580\) 27.6725 1.14904
\(581\) −10.7697 −0.446804
\(582\) 0 0
\(583\) −14.7162 −0.609485
\(584\) −13.7487 −0.568926
\(585\) 0 0
\(586\) −8.55030 −0.353210
\(587\) 33.6581 1.38922 0.694609 0.719387i \(-0.255577\pi\)
0.694609 + 0.719387i \(0.255577\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 2.37039 0.0975872
\(591\) 0 0
\(592\) 14.3030 0.587851
\(593\) 44.8879 1.84333 0.921663 0.387992i \(-0.126831\pi\)
0.921663 + 0.387992i \(0.126831\pi\)
\(594\) 0 0
\(595\) −3.70351 −0.151829
\(596\) −30.6983 −1.25745
\(597\) 0 0
\(598\) −6.58644 −0.269340
\(599\) 19.5846 0.800206 0.400103 0.916470i \(-0.368974\pi\)
0.400103 + 0.916470i \(0.368974\pi\)
\(600\) 0 0
\(601\) −30.4595 −1.24247 −0.621234 0.783625i \(-0.713368\pi\)
−0.621234 + 0.783625i \(0.713368\pi\)
\(602\) 3.76706 0.153534
\(603\) 0 0
\(604\) 23.4368 0.953632
\(605\) −22.0165 −0.895099
\(606\) 0 0
\(607\) −13.3746 −0.542857 −0.271428 0.962459i \(-0.587496\pi\)
−0.271428 + 0.962459i \(0.587496\pi\)
\(608\) −22.0657 −0.894882
\(609\) 0 0
\(610\) 5.92306 0.239818
\(611\) 2.54914 0.103127
\(612\) 0 0
\(613\) 5.19521 0.209832 0.104916 0.994481i \(-0.466543\pi\)
0.104916 + 0.994481i \(0.466543\pi\)
\(614\) 21.1812 0.854804
\(615\) 0 0
\(616\) 7.63526 0.307633
\(617\) 30.0131 1.20828 0.604140 0.796878i \(-0.293517\pi\)
0.604140 + 0.796878i \(0.293517\pi\)
\(618\) 0 0
\(619\) −18.3260 −0.736584 −0.368292 0.929710i \(-0.620057\pi\)
−0.368292 + 0.929710i \(0.620057\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −1.64197 −0.0658369
\(623\) −3.38551 −0.135638
\(624\) 0 0
\(625\) 7.75849 0.310339
\(626\) −7.40901 −0.296123
\(627\) 0 0
\(628\) −23.0935 −0.921532
\(629\) 13.6254 0.543279
\(630\) 0 0
\(631\) −10.3352 −0.411438 −0.205719 0.978611i \(-0.565953\pi\)
−0.205719 + 0.978611i \(0.565953\pi\)
\(632\) −34.2528 −1.36250
\(633\) 0 0
\(634\) −6.03054 −0.239503
\(635\) −5.30922 −0.210690
\(636\) 0 0
\(637\) −18.6725 −0.739833
\(638\) −13.8923 −0.550001
\(639\) 0 0
\(640\) 39.8493 1.57518
\(641\) 0.101252 0.00399921 0.00199961 0.999998i \(-0.499364\pi\)
0.00199961 + 0.999998i \(0.499364\pi\)
\(642\) 0 0
\(643\) 13.7118 0.540742 0.270371 0.962756i \(-0.412854\pi\)
0.270371 + 0.962756i \(0.412854\pi\)
\(644\) 3.82094 0.150566
\(645\) 0 0
\(646\) −3.42801 −0.134873
\(647\) −10.8344 −0.425943 −0.212971 0.977058i \(-0.568314\pi\)
−0.212971 + 0.977058i \(0.568314\pi\)
\(648\) 0 0
\(649\) 3.81629 0.149803
\(650\) 17.5460 0.688212
\(651\) 0 0
\(652\) 1.59301 0.0623870
\(653\) 24.2522 0.949061 0.474531 0.880239i \(-0.342618\pi\)
0.474531 + 0.880239i \(0.342618\pi\)
\(654\) 0 0
\(655\) 23.3310 0.911619
\(656\) −1.03837 −0.0405415
\(657\) 0 0
\(658\) 0.461122 0.0179764
\(659\) 8.53349 0.332418 0.166209 0.986091i \(-0.446847\pi\)
0.166209 + 0.986091i \(0.446847\pi\)
\(660\) 0 0
\(661\) 37.8842 1.47352 0.736762 0.676152i \(-0.236354\pi\)
0.736762 + 0.676152i \(0.236354\pi\)
\(662\) 22.3183 0.867424
\(663\) 0 0
\(664\) 34.2844 1.33049
\(665\) 10.7538 0.417015
\(666\) 0 0
\(667\) −16.0722 −0.622316
\(668\) 17.2118 0.665945
\(669\) 0 0
\(670\) 5.33475 0.206099
\(671\) 9.53606 0.368136
\(672\) 0 0
\(673\) −7.12011 −0.274460 −0.137230 0.990539i \(-0.543820\pi\)
−0.137230 + 0.990539i \(0.543820\pi\)
\(674\) −19.1223 −0.736562
\(675\) 0 0
\(676\) 6.91154 0.265829
\(677\) 48.0610 1.84713 0.923567 0.383438i \(-0.125260\pi\)
0.923567 + 0.383438i \(0.125260\pi\)
\(678\) 0 0
\(679\) −4.02892 −0.154616
\(680\) 11.7897 0.452116
\(681\) 0 0
\(682\) 0 0
\(683\) −32.5731 −1.24638 −0.623188 0.782072i \(-0.714163\pi\)
−0.623188 + 0.782072i \(0.714163\pi\)
\(684\) 0 0
\(685\) −47.2705 −1.80611
\(686\) −7.06222 −0.269637
\(687\) 0 0
\(688\) 9.83073 0.374793
\(689\) 10.4044 0.396376
\(690\) 0 0
\(691\) 27.2531 1.03676 0.518378 0.855152i \(-0.326536\pi\)
0.518378 + 0.855152i \(0.326536\pi\)
\(692\) −31.4871 −1.19696
\(693\) 0 0
\(694\) −17.8689 −0.678296
\(695\) 69.3815 2.63179
\(696\) 0 0
\(697\) −0.989173 −0.0374676
\(698\) 3.85698 0.145989
\(699\) 0 0
\(700\) −10.1788 −0.384724
\(701\) −8.48915 −0.320631 −0.160315 0.987066i \(-0.551251\pi\)
−0.160315 + 0.987066i \(0.551251\pi\)
\(702\) 0 0
\(703\) −39.5638 −1.49218
\(704\) −5.17332 −0.194977
\(705\) 0 0
\(706\) 8.04567 0.302803
\(707\) −2.90657 −0.109313
\(708\) 0 0
\(709\) 23.3861 0.878283 0.439142 0.898418i \(-0.355283\pi\)
0.439142 + 0.898418i \(0.355283\pi\)
\(710\) −19.7758 −0.742172
\(711\) 0 0
\(712\) 10.7774 0.403901
\(713\) 0 0
\(714\) 0 0
\(715\) 44.3991 1.66043
\(716\) 0.200732 0.00750172
\(717\) 0 0
\(718\) −18.0646 −0.674165
\(719\) 12.9769 0.483956 0.241978 0.970282i \(-0.422204\pi\)
0.241978 + 0.970282i \(0.422204\pi\)
\(720\) 0 0
\(721\) −4.76792 −0.177567
\(722\) −3.14649 −0.117100
\(723\) 0 0
\(724\) 11.7882 0.438104
\(725\) 42.8156 1.59013
\(726\) 0 0
\(727\) −12.4230 −0.460744 −0.230372 0.973103i \(-0.573994\pi\)
−0.230372 + 0.973103i \(0.573994\pi\)
\(728\) −5.39814 −0.200068
\(729\) 0 0
\(730\) −14.4622 −0.535272
\(731\) 9.36496 0.346376
\(732\) 0 0
\(733\) −34.1573 −1.26163 −0.630815 0.775933i \(-0.717279\pi\)
−0.630815 + 0.775933i \(0.717279\pi\)
\(734\) −18.6264 −0.687512
\(735\) 0 0
\(736\) −19.0657 −0.702769
\(737\) 8.58888 0.316376
\(738\) 0 0
\(739\) 12.3749 0.455219 0.227610 0.973752i \(-0.426909\pi\)
0.227610 + 0.973752i \(0.426909\pi\)
\(740\) 58.8580 2.16366
\(741\) 0 0
\(742\) 1.88209 0.0690936
\(743\) −16.2455 −0.595990 −0.297995 0.954567i \(-0.596318\pi\)
−0.297995 + 0.954567i \(0.596318\pi\)
\(744\) 0 0
\(745\) −74.6520 −2.73504
\(746\) −8.55374 −0.313175
\(747\) 0 0
\(748\) 8.21057 0.300208
\(749\) −1.77671 −0.0649196
\(750\) 0 0
\(751\) −10.7883 −0.393670 −0.196835 0.980437i \(-0.563066\pi\)
−0.196835 + 0.980437i \(0.563066\pi\)
\(752\) 1.20337 0.0438823
\(753\) 0 0
\(754\) 9.82187 0.357691
\(755\) 56.9936 2.07421
\(756\) 0 0
\(757\) −41.1017 −1.49387 −0.746933 0.664900i \(-0.768474\pi\)
−0.746933 + 0.664900i \(0.768474\pi\)
\(758\) −3.19857 −0.116177
\(759\) 0 0
\(760\) −34.2337 −1.24179
\(761\) 19.6605 0.712693 0.356347 0.934354i \(-0.384022\pi\)
0.356347 + 0.934354i \(0.384022\pi\)
\(762\) 0 0
\(763\) 1.12740 0.0408146
\(764\) −32.1731 −1.16398
\(765\) 0 0
\(766\) −3.46217 −0.125093
\(767\) −2.69812 −0.0974236
\(768\) 0 0
\(769\) 3.78834 0.136611 0.0683055 0.997664i \(-0.478241\pi\)
0.0683055 + 0.997664i \(0.478241\pi\)
\(770\) 8.03151 0.289435
\(771\) 0 0
\(772\) −8.63417 −0.310750
\(773\) −25.3696 −0.912480 −0.456240 0.889857i \(-0.650804\pi\)
−0.456240 + 0.889857i \(0.650804\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 12.8256 0.460414
\(777\) 0 0
\(778\) 12.8258 0.459828
\(779\) 2.87225 0.102909
\(780\) 0 0
\(781\) −31.8388 −1.13928
\(782\) −2.96194 −0.105919
\(783\) 0 0
\(784\) −8.81473 −0.314812
\(785\) −56.1588 −2.00439
\(786\) 0 0
\(787\) 25.9466 0.924896 0.462448 0.886646i \(-0.346971\pi\)
0.462448 + 0.886646i \(0.346971\pi\)
\(788\) −24.2637 −0.864359
\(789\) 0 0
\(790\) −36.0304 −1.28190
\(791\) −4.87087 −0.173188
\(792\) 0 0
\(793\) −6.74201 −0.239416
\(794\) 22.4491 0.796687
\(795\) 0 0
\(796\) −6.49701 −0.230280
\(797\) −18.5026 −0.655396 −0.327698 0.944782i \(-0.606273\pi\)
−0.327698 + 0.944782i \(0.606273\pi\)
\(798\) 0 0
\(799\) 1.14635 0.0405551
\(800\) 50.7902 1.79570
\(801\) 0 0
\(802\) −8.54300 −0.301664
\(803\) −23.2840 −0.821676
\(804\) 0 0
\(805\) 9.29174 0.327491
\(806\) 0 0
\(807\) 0 0
\(808\) 9.25276 0.325511
\(809\) 36.7478 1.29199 0.645993 0.763344i \(-0.276444\pi\)
0.645993 + 0.763344i \(0.276444\pi\)
\(810\) 0 0
\(811\) −39.4301 −1.38458 −0.692289 0.721620i \(-0.743398\pi\)
−0.692289 + 0.721620i \(0.743398\pi\)
\(812\) −5.69788 −0.199956
\(813\) 0 0
\(814\) −29.5483 −1.03567
\(815\) 3.87387 0.135696
\(816\) 0 0
\(817\) −27.1929 −0.951359
\(818\) 2.37743 0.0831248
\(819\) 0 0
\(820\) −4.27297 −0.149218
\(821\) 1.48058 0.0516727 0.0258363 0.999666i \(-0.491775\pi\)
0.0258363 + 0.999666i \(0.491775\pi\)
\(822\) 0 0
\(823\) 38.8652 1.35476 0.677378 0.735635i \(-0.263116\pi\)
0.677378 + 0.735635i \(0.263116\pi\)
\(824\) 15.1782 0.528758
\(825\) 0 0
\(826\) −0.488073 −0.0169822
\(827\) 33.9363 1.18008 0.590040 0.807374i \(-0.299112\pi\)
0.590040 + 0.807374i \(0.299112\pi\)
\(828\) 0 0
\(829\) −16.5307 −0.574135 −0.287067 0.957910i \(-0.592680\pi\)
−0.287067 + 0.957910i \(0.592680\pi\)
\(830\) 36.0636 1.25179
\(831\) 0 0
\(832\) 3.65754 0.126802
\(833\) −8.39710 −0.290942
\(834\) 0 0
\(835\) 41.8556 1.44847
\(836\) −23.8409 −0.824555
\(837\) 0 0
\(838\) 27.6122 0.953848
\(839\) 54.0781 1.86698 0.933491 0.358600i \(-0.116746\pi\)
0.933491 + 0.358600i \(0.116746\pi\)
\(840\) 0 0
\(841\) −5.03279 −0.173545
\(842\) 14.9512 0.515254
\(843\) 0 0
\(844\) 17.5455 0.603942
\(845\) 16.8075 0.578194
\(846\) 0 0
\(847\) 4.53330 0.155766
\(848\) 4.91160 0.168665
\(849\) 0 0
\(850\) 7.89051 0.270642
\(851\) −34.1847 −1.17184
\(852\) 0 0
\(853\) 39.5762 1.35506 0.677532 0.735493i \(-0.263050\pi\)
0.677532 + 0.735493i \(0.263050\pi\)
\(854\) −1.21958 −0.0417333
\(855\) 0 0
\(856\) 5.65598 0.193317
\(857\) −12.7250 −0.434679 −0.217340 0.976096i \(-0.569738\pi\)
−0.217340 + 0.976096i \(0.569738\pi\)
\(858\) 0 0
\(859\) 21.1543 0.721777 0.360888 0.932609i \(-0.382474\pi\)
0.360888 + 0.932609i \(0.382474\pi\)
\(860\) 40.4542 1.37948
\(861\) 0 0
\(862\) 8.01237 0.272902
\(863\) 9.33974 0.317928 0.158964 0.987284i \(-0.449185\pi\)
0.158964 + 0.987284i \(0.449185\pi\)
\(864\) 0 0
\(865\) −76.5702 −2.60346
\(866\) −16.9591 −0.576292
\(867\) 0 0
\(868\) 0 0
\(869\) −58.0085 −1.96780
\(870\) 0 0
\(871\) −6.07235 −0.205754
\(872\) −3.58896 −0.121538
\(873\) 0 0
\(874\) 8.60055 0.290918
\(875\) −10.6014 −0.358392
\(876\) 0 0
\(877\) 22.4353 0.757585 0.378792 0.925482i \(-0.376339\pi\)
0.378792 + 0.925482i \(0.376339\pi\)
\(878\) 12.5441 0.423343
\(879\) 0 0
\(880\) 20.9595 0.706543
\(881\) −46.4315 −1.56432 −0.782158 0.623080i \(-0.785881\pi\)
−0.782158 + 0.623080i \(0.785881\pi\)
\(882\) 0 0
\(883\) −36.5396 −1.22965 −0.614827 0.788662i \(-0.710774\pi\)
−0.614827 + 0.788662i \(0.710774\pi\)
\(884\) −5.80488 −0.195239
\(885\) 0 0
\(886\) −12.2456 −0.411400
\(887\) −28.6850 −0.963150 −0.481575 0.876405i \(-0.659935\pi\)
−0.481575 + 0.876405i \(0.659935\pi\)
\(888\) 0 0
\(889\) 1.09319 0.0366644
\(890\) 11.3367 0.380008
\(891\) 0 0
\(892\) 14.3677 0.481066
\(893\) −3.32865 −0.111389
\(894\) 0 0
\(895\) 0.488140 0.0163167
\(896\) −8.20514 −0.274114
\(897\) 0 0
\(898\) −6.34235 −0.211647
\(899\) 0 0
\(900\) 0 0
\(901\) 4.67889 0.155877
\(902\) 2.14514 0.0714254
\(903\) 0 0
\(904\) 15.5059 0.515719
\(905\) 28.6665 0.952906
\(906\) 0 0
\(907\) −22.1896 −0.736794 −0.368397 0.929669i \(-0.620093\pi\)
−0.368397 + 0.929669i \(0.620093\pi\)
\(908\) 33.1799 1.10111
\(909\) 0 0
\(910\) −5.67829 −0.188233
\(911\) −28.8324 −0.955261 −0.477631 0.878561i \(-0.658504\pi\)
−0.477631 + 0.878561i \(0.658504\pi\)
\(912\) 0 0
\(913\) 58.0620 1.92157
\(914\) 21.5121 0.711557
\(915\) 0 0
\(916\) 25.8510 0.854139
\(917\) −4.80396 −0.158641
\(918\) 0 0
\(919\) 48.0623 1.58543 0.792715 0.609592i \(-0.208667\pi\)
0.792715 + 0.609592i \(0.208667\pi\)
\(920\) −29.5793 −0.975201
\(921\) 0 0
\(922\) −4.59786 −0.151423
\(923\) 22.5101 0.740928
\(924\) 0 0
\(925\) 91.0668 2.99426
\(926\) −24.3518 −0.800251
\(927\) 0 0
\(928\) 28.4312 0.933300
\(929\) 7.01617 0.230193 0.115097 0.993354i \(-0.463282\pi\)
0.115097 + 0.993354i \(0.463282\pi\)
\(930\) 0 0
\(931\) 24.3825 0.799105
\(932\) −14.9961 −0.491214
\(933\) 0 0
\(934\) −24.7827 −0.810916
\(935\) 19.9664 0.652972
\(936\) 0 0
\(937\) −12.8807 −0.420793 −0.210396 0.977616i \(-0.567475\pi\)
−0.210396 + 0.977616i \(0.567475\pi\)
\(938\) −1.09845 −0.0358656
\(939\) 0 0
\(940\) 4.95195 0.161515
\(941\) −50.0392 −1.63123 −0.815616 0.578593i \(-0.803602\pi\)
−0.815616 + 0.578593i \(0.803602\pi\)
\(942\) 0 0
\(943\) 2.48174 0.0808165
\(944\) −1.27370 −0.0414555
\(945\) 0 0
\(946\) −20.3090 −0.660304
\(947\) 51.8679 1.68548 0.842741 0.538320i \(-0.180941\pi\)
0.842741 + 0.538320i \(0.180941\pi\)
\(948\) 0 0
\(949\) 16.4619 0.534374
\(950\) −22.9115 −0.743349
\(951\) 0 0
\(952\) −2.42756 −0.0786777
\(953\) 18.7352 0.606893 0.303447 0.952848i \(-0.401863\pi\)
0.303447 + 0.952848i \(0.401863\pi\)
\(954\) 0 0
\(955\) −78.2385 −2.53174
\(956\) −0.900482 −0.0291237
\(957\) 0 0
\(958\) −22.9218 −0.740569
\(959\) 9.73320 0.314301
\(960\) 0 0
\(961\) 0 0
\(962\) 20.8907 0.673542
\(963\) 0 0
\(964\) 23.4338 0.754751
\(965\) −20.9965 −0.675902
\(966\) 0 0
\(967\) 47.7846 1.53665 0.768324 0.640061i \(-0.221091\pi\)
0.768324 + 0.640061i \(0.221091\pi\)
\(968\) −14.4313 −0.463839
\(969\) 0 0
\(970\) 13.4913 0.433178
\(971\) 31.1007 0.998068 0.499034 0.866583i \(-0.333688\pi\)
0.499034 + 0.866583i \(0.333688\pi\)
\(972\) 0 0
\(973\) −14.2860 −0.457987
\(974\) −19.6611 −0.629983
\(975\) 0 0
\(976\) −3.18269 −0.101876
\(977\) 22.0791 0.706375 0.353187 0.935553i \(-0.385098\pi\)
0.353187 + 0.935553i \(0.385098\pi\)
\(978\) 0 0
\(979\) 18.2520 0.583337
\(980\) −36.2733 −1.15871
\(981\) 0 0
\(982\) −19.2807 −0.615273
\(983\) −37.5769 −1.19852 −0.599258 0.800556i \(-0.704538\pi\)
−0.599258 + 0.800556i \(0.704538\pi\)
\(984\) 0 0
\(985\) −59.0044 −1.88004
\(986\) 4.41693 0.140664
\(987\) 0 0
\(988\) 16.8555 0.536246
\(989\) −23.4958 −0.747122
\(990\) 0 0
\(991\) 6.77397 0.215182 0.107591 0.994195i \(-0.465686\pi\)
0.107591 + 0.994195i \(0.465686\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 4.07192 0.129154
\(995\) −15.7994 −0.500875
\(996\) 0 0
\(997\) −29.5733 −0.936595 −0.468298 0.883571i \(-0.655132\pi\)
−0.468298 + 0.883571i \(0.655132\pi\)
\(998\) 28.4795 0.901502
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8649.2.a.be.1.6 8
3.2 odd 2 961.2.a.j.1.3 8
31.22 odd 30 279.2.y.c.19.1 16
31.24 odd 30 279.2.y.c.235.1 16
31.30 odd 2 8649.2.a.bf.1.6 8
93.2 odd 10 961.2.d.q.531.1 16
93.5 odd 6 961.2.c.i.521.3 16
93.8 odd 10 961.2.d.n.374.4 16
93.11 even 30 961.2.g.k.338.2 16
93.14 odd 30 961.2.g.j.816.2 16
93.17 even 30 961.2.g.k.816.2 16
93.20 odd 30 961.2.g.j.338.2 16
93.23 even 10 961.2.d.o.374.4 16
93.26 even 6 961.2.c.j.521.3 16
93.29 even 10 961.2.d.p.531.1 16
93.35 odd 10 961.2.d.n.388.4 16
93.38 odd 30 961.2.g.l.235.2 16
93.41 odd 30 961.2.g.m.844.1 16
93.44 even 30 961.2.g.t.448.1 16
93.47 odd 10 961.2.d.q.628.1 16
93.50 odd 30 961.2.g.n.547.1 16
93.53 even 30 31.2.g.a.19.2 yes 16
93.56 odd 6 961.2.c.i.439.3 16
93.59 odd 30 961.2.g.m.846.1 16
93.65 even 30 961.2.g.s.846.1 16
93.68 even 6 961.2.c.j.439.3 16
93.71 odd 30 961.2.g.l.732.2 16
93.74 even 30 961.2.g.t.547.1 16
93.77 even 10 961.2.d.p.628.1 16
93.80 odd 30 961.2.g.n.448.1 16
93.83 even 30 961.2.g.s.844.1 16
93.86 even 30 31.2.g.a.18.2 16
93.89 even 10 961.2.d.o.388.4 16
93.92 even 2 961.2.a.i.1.3 8
372.179 odd 30 496.2.bg.c.49.1 16
372.239 odd 30 496.2.bg.c.81.1 16
465.53 odd 60 775.2.ck.a.174.3 32
465.179 even 30 775.2.bl.a.576.1 16
465.239 even 30 775.2.bl.a.701.1 16
465.272 odd 60 775.2.ck.a.49.3 32
465.332 odd 60 775.2.ck.a.174.2 32
465.458 odd 60 775.2.ck.a.49.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.18.2 16 93.86 even 30
31.2.g.a.19.2 yes 16 93.53 even 30
279.2.y.c.19.1 16 31.22 odd 30
279.2.y.c.235.1 16 31.24 odd 30
496.2.bg.c.49.1 16 372.179 odd 30
496.2.bg.c.81.1 16 372.239 odd 30
775.2.bl.a.576.1 16 465.179 even 30
775.2.bl.a.701.1 16 465.239 even 30
775.2.ck.a.49.2 32 465.458 odd 60
775.2.ck.a.49.3 32 465.272 odd 60
775.2.ck.a.174.2 32 465.332 odd 60
775.2.ck.a.174.3 32 465.53 odd 60
961.2.a.i.1.3 8 93.92 even 2
961.2.a.j.1.3 8 3.2 odd 2
961.2.c.i.439.3 16 93.56 odd 6
961.2.c.i.521.3 16 93.5 odd 6
961.2.c.j.439.3 16 93.68 even 6
961.2.c.j.521.3 16 93.26 even 6
961.2.d.n.374.4 16 93.8 odd 10
961.2.d.n.388.4 16 93.35 odd 10
961.2.d.o.374.4 16 93.23 even 10
961.2.d.o.388.4 16 93.89 even 10
961.2.d.p.531.1 16 93.29 even 10
961.2.d.p.628.1 16 93.77 even 10
961.2.d.q.531.1 16 93.2 odd 10
961.2.d.q.628.1 16 93.47 odd 10
961.2.g.j.338.2 16 93.20 odd 30
961.2.g.j.816.2 16 93.14 odd 30
961.2.g.k.338.2 16 93.11 even 30
961.2.g.k.816.2 16 93.17 even 30
961.2.g.l.235.2 16 93.38 odd 30
961.2.g.l.732.2 16 93.71 odd 30
961.2.g.m.844.1 16 93.41 odd 30
961.2.g.m.846.1 16 93.59 odd 30
961.2.g.n.448.1 16 93.80 odd 30
961.2.g.n.547.1 16 93.50 odd 30
961.2.g.s.844.1 16 93.83 even 30
961.2.g.s.846.1 16 93.65 even 30
961.2.g.t.448.1 16 93.44 even 30
961.2.g.t.547.1 16 93.74 even 30
8649.2.a.be.1.6 8 1.1 even 1 trivial
8649.2.a.bf.1.6 8 31.30 odd 2