Properties

Label 8649.2.a.be.1.6
Level 86498649
Weight 22
Character 8649.1
Self dual yes
Analytic conductor 69.06369.063
Analytic rank 11
Dimension 88
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8649,2,Mod(1,8649)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8649, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8649.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 8649=32312 8649 = 3^{2} \cdot 31^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8649.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 69.062612708269.0626127082
Analytic rank: 11
Dimension: 88
Coefficient field: 8.8.2051578125.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x82x79x6+19x5+14x428x311x2+6x+1 x^{8} - 2x^{7} - 9x^{6} + 19x^{5} + 14x^{4} - 28x^{3} - 11x^{2} + 6x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 31)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.6
Root 2.73366-2.73366 of defining polynomial
Character χ\chi == 8649.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+0.689493q21.52460q43.70752q5+0.763394q72.43019q82.55631q104.11562q11+2.90975q13+0.526355q14+1.37360q16+1.30852q173.79954q19+5.65248q202.83769q223.28296q23+8.74568q25+2.00625q261.16387q28+4.89563q29+5.80746q32+0.902218q342.83030q35+10.4128q372.61976q38+9.00995q400.755946q41+7.15689q43+6.27468q442.26358q46+0.876067q476.41723q49+6.03008q504.43621q52+3.57570q53+15.2587q551.85519q56+3.37550q580.927270q592.31704q61+1.25699q6410.7879q652.08690q671.99498q681.95147q70+7.73608q71+5.65748q73+7.17954q74+5.79278q763.14184q77+14.0947q795.09266q800.521219q8214.1077q834.85137q85+4.93462q86+10.0017q884.43481q89+2.22129q91+5.00520q92+0.604042q94+14.0869q955.27764q974.42463q98+O(q100)q+0.689493 q^{2} -1.52460 q^{4} -3.70752 q^{5} +0.763394 q^{7} -2.43019 q^{8} -2.55631 q^{10} -4.11562 q^{11} +2.90975 q^{13} +0.526355 q^{14} +1.37360 q^{16} +1.30852 q^{17} -3.79954 q^{19} +5.65248 q^{20} -2.83769 q^{22} -3.28296 q^{23} +8.74568 q^{25} +2.00625 q^{26} -1.16387 q^{28} +4.89563 q^{29} +5.80746 q^{32} +0.902218 q^{34} -2.83030 q^{35} +10.4128 q^{37} -2.61976 q^{38} +9.00995 q^{40} -0.755946 q^{41} +7.15689 q^{43} +6.27468 q^{44} -2.26358 q^{46} +0.876067 q^{47} -6.41723 q^{49} +6.03008 q^{50} -4.43621 q^{52} +3.57570 q^{53} +15.2587 q^{55} -1.85519 q^{56} +3.37550 q^{58} -0.927270 q^{59} -2.31704 q^{61} +1.25699 q^{64} -10.7879 q^{65} -2.08690 q^{67} -1.99498 q^{68} -1.95147 q^{70} +7.73608 q^{71} +5.65748 q^{73} +7.17954 q^{74} +5.79278 q^{76} -3.14184 q^{77} +14.0947 q^{79} -5.09266 q^{80} -0.521219 q^{82} -14.1077 q^{83} -4.85137 q^{85} +4.93462 q^{86} +10.0017 q^{88} -4.43481 q^{89} +2.22129 q^{91} +5.00520 q^{92} +0.604042 q^{94} +14.0869 q^{95} -5.27764 q^{97} -4.42463 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q2q2+8q43q52q7+9q813q1018q11+8q13+9q14+4q1614q176q19+7q20+4q2222q23+13q259q265q28+10q98+O(q100) 8 q - 2 q^{2} + 8 q^{4} - 3 q^{5} - 2 q^{7} + 9 q^{8} - 13 q^{10} - 18 q^{11} + 8 q^{13} + 9 q^{14} + 4 q^{16} - 14 q^{17} - 6 q^{19} + 7 q^{20} + 4 q^{22} - 22 q^{23} + 13 q^{25} - 9 q^{26} - 5 q^{28}+ \cdots - 10 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.689493 0.487545 0.243772 0.969832i 0.421615π-0.421615\pi
0.243772 + 0.969832i 0.421615π0.421615\pi
33 0 0
44 −1.52460 −0.762300
55 −3.70752 −1.65805 −0.829026 0.559210i 0.811104π-0.811104\pi
−0.829026 + 0.559210i 0.811104π0.811104\pi
66 0 0
77 0.763394 0.288536 0.144268 0.989539i 0.453917π-0.453917\pi
0.144268 + 0.989539i 0.453917π0.453917\pi
88 −2.43019 −0.859200
99 0 0
1010 −2.55631 −0.808375
1111 −4.11562 −1.24091 −0.620453 0.784243i 0.713051π-0.713051\pi
−0.620453 + 0.784243i 0.713051π0.713051\pi
1212 0 0
1313 2.90975 0.807020 0.403510 0.914975i 0.367790π-0.367790\pi
0.403510 + 0.914975i 0.367790π0.367790\pi
1414 0.526355 0.140674
1515 0 0
1616 1.37360 0.343401
1717 1.30852 0.317364 0.158682 0.987330i 0.449276π-0.449276\pi
0.158682 + 0.987330i 0.449276π0.449276\pi
1818 0 0
1919 −3.79954 −0.871675 −0.435837 0.900025i 0.643548π-0.643548\pi
−0.435837 + 0.900025i 0.643548π0.643548\pi
2020 5.65248 1.26393
2121 0 0
2222 −2.83769 −0.604998
2323 −3.28296 −0.684544 −0.342272 0.939601i 0.611196π-0.611196\pi
−0.342272 + 0.939601i 0.611196π0.611196\pi
2424 0 0
2525 8.74568 1.74914
2626 2.00625 0.393458
2727 0 0
2828 −1.16387 −0.219951
2929 4.89563 0.909096 0.454548 0.890722i 0.349801π-0.349801\pi
0.454548 + 0.890722i 0.349801π0.349801\pi
3030 0 0
3131 0 0
3232 5.80746 1.02662
3333 0 0
3434 0.902218 0.154729
3535 −2.83030 −0.478407
3636 0 0
3737 10.4128 1.71185 0.855925 0.517099i 0.172988π-0.172988\pi
0.855925 + 0.517099i 0.172988π0.172988\pi
3838 −2.61976 −0.424981
3939 0 0
4040 9.00995 1.42460
4141 −0.755946 −0.118059 −0.0590295 0.998256i 0.518801π-0.518801\pi
−0.0590295 + 0.998256i 0.518801π0.518801\pi
4242 0 0
4343 7.15689 1.09142 0.545708 0.837976i 0.316261π-0.316261\pi
0.545708 + 0.837976i 0.316261π0.316261\pi
4444 6.27468 0.945943
4545 0 0
4646 −2.26358 −0.333746
4747 0.876067 0.127787 0.0638937 0.997957i 0.479648π-0.479648\pi
0.0638937 + 0.997957i 0.479648π0.479648\pi
4848 0 0
4949 −6.41723 −0.916747
5050 6.03008 0.852782
5151 0 0
5252 −4.43621 −0.615191
5353 3.57570 0.491161 0.245580 0.969376i 0.421021π-0.421021\pi
0.245580 + 0.969376i 0.421021π0.421021\pi
5454 0 0
5555 15.2587 2.05749
5656 −1.85519 −0.247910
5757 0 0
5858 3.37550 0.443225
5959 −0.927270 −0.120720 −0.0603601 0.998177i 0.519225π-0.519225\pi
−0.0603601 + 0.998177i 0.519225π0.519225\pi
6060 0 0
6161 −2.31704 −0.296666 −0.148333 0.988937i 0.547391π-0.547391\pi
−0.148333 + 0.988937i 0.547391π0.547391\pi
6262 0 0
6363 0 0
6464 1.25699 0.157124
6565 −10.7879 −1.33808
6666 0 0
6767 −2.08690 −0.254955 −0.127478 0.991841i 0.540688π-0.540688\pi
−0.127478 + 0.991841i 0.540688π0.540688\pi
6868 −1.99498 −0.241926
6969 0 0
7070 −1.95147 −0.233245
7171 7.73608 0.918104 0.459052 0.888409i 0.348189π-0.348189\pi
0.459052 + 0.888409i 0.348189π0.348189\pi
7272 0 0
7373 5.65748 0.662158 0.331079 0.943603i 0.392587π-0.392587\pi
0.331079 + 0.943603i 0.392587π0.392587\pi
7474 7.17954 0.834604
7575 0 0
7676 5.79278 0.664477
7777 −3.14184 −0.358046
7878 0 0
7979 14.0947 1.58578 0.792890 0.609365i 0.208576π-0.208576\pi
0.792890 + 0.609365i 0.208576π0.208576\pi
8080 −5.09266 −0.569377
8181 0 0
8282 −0.521219 −0.0575590
8383 −14.1077 −1.54852 −0.774261 0.632866i 0.781878π-0.781878\pi
−0.774261 + 0.632866i 0.781878π0.781878\pi
8484 0 0
8585 −4.85137 −0.526205
8686 4.93462 0.532114
8787 0 0
8888 10.0017 1.06619
8989 −4.43481 −0.470089 −0.235045 0.971985i 0.575524π-0.575524\pi
−0.235045 + 0.971985i 0.575524π0.575524\pi
9090 0 0
9191 2.22129 0.232854
9292 5.00520 0.521828
9393 0 0
9494 0.604042 0.0623021
9595 14.0869 1.44528
9696 0 0
9797 −5.27764 −0.535863 −0.267932 0.963438i 0.586340π-0.586340\pi
−0.267932 + 0.963438i 0.586340π0.586340\pi
9898 −4.42463 −0.446955
9999 0 0
100100 −13.3337 −1.33337
101101 −3.80743 −0.378853 −0.189427 0.981895i 0.560663π-0.560663\pi
−0.189427 + 0.981895i 0.560663π0.560663\pi
102102 0 0
103103 −6.24569 −0.615406 −0.307703 0.951482i 0.599560π-0.599560\pi
−0.307703 + 0.951482i 0.599560π0.599560\pi
104104 −7.07124 −0.693392
105105 0 0
106106 2.46542 0.239463
107107 −2.32738 −0.224997 −0.112498 0.993652i 0.535885π-0.535885\pi
−0.112498 + 0.993652i 0.535885π0.535885\pi
108108 0 0
109109 1.47683 0.141454 0.0707272 0.997496i 0.477468π-0.477468\pi
0.0707272 + 0.997496i 0.477468π0.477468\pi
110110 10.5208 1.00312
111111 0 0
112112 1.04860 0.0990835
113113 −6.38055 −0.600231 −0.300116 0.953903i 0.597025π-0.597025\pi
−0.300116 + 0.953903i 0.597025π0.597025\pi
114114 0 0
115115 12.1716 1.13501
116116 −7.46388 −0.693004
117117 0 0
118118 −0.639346 −0.0588566
119119 0.998919 0.0915708
120120 0 0
121121 5.93835 0.539850
122122 −1.59758 −0.144638
123123 0 0
124124 0 0
125125 −13.8872 −1.24211
126126 0 0
127127 1.43201 0.127071 0.0635354 0.997980i 0.479762π-0.479762\pi
0.0635354 + 0.997980i 0.479762π0.479762\pi
128128 −10.7482 −0.950019
129129 0 0
130130 −7.43821 −0.652374
131131 −6.29290 −0.549813 −0.274907 0.961471i 0.588647π-0.588647\pi
−0.274907 + 0.961471i 0.588647π0.588647\pi
132132 0 0
133133 −2.90055 −0.251509
134134 −1.43890 −0.124302
135135 0 0
136136 −3.17996 −0.272679
137137 12.7499 1.08930 0.544649 0.838664i 0.316663π-0.316663\pi
0.544649 + 0.838664i 0.316663π0.316663\pi
138138 0 0
139139 −18.7137 −1.58728 −0.793640 0.608388i 0.791816π-0.791816\pi
−0.793640 + 0.608388i 0.791816π0.791816\pi
140140 4.31507 0.364690
141141 0 0
142142 5.33397 0.447617
143143 −11.9754 −1.00144
144144 0 0
145145 −18.1506 −1.50733
146146 3.90079 0.322832
147147 0 0
148148 −15.8753 −1.30494
149149 20.1353 1.64955 0.824774 0.565462i 0.191302π-0.191302\pi
0.824774 + 0.565462i 0.191302π0.191302\pi
150150 0 0
151151 −15.3725 −1.25099 −0.625497 0.780227i 0.715104π-0.715104\pi
−0.625497 + 0.780227i 0.715104π0.715104\pi
152152 9.23359 0.748943
153153 0 0
154154 −2.16628 −0.174564
155155 0 0
156156 0 0
157157 15.1473 1.20888 0.604442 0.796649i 0.293396π-0.293396\pi
0.604442 + 0.796649i 0.293396π0.293396\pi
158158 9.71821 0.773139
159159 0 0
160160 −21.5313 −1.70220
161161 −2.50619 −0.197515
162162 0 0
163163 −1.04487 −0.0818405 −0.0409202 0.999162i 0.513029π-0.513029\pi
−0.0409202 + 0.999162i 0.513029π0.513029\pi
164164 1.15251 0.0899963
165165 0 0
166166 −9.72717 −0.754975
167167 −11.2894 −0.873600 −0.436800 0.899559i 0.643888π-0.643888\pi
−0.436800 + 0.899559i 0.643888π0.643888\pi
168168 0 0
169169 −4.53335 −0.348719
170170 −3.34499 −0.256549
171171 0 0
172172 −10.9114 −0.831986
173173 20.6527 1.57019 0.785097 0.619373i 0.212613π-0.212613\pi
0.785097 + 0.619373i 0.212613π0.212613\pi
174174 0 0
175175 6.67640 0.504688
176176 −5.65324 −0.426129
177177 0 0
178178 −3.05777 −0.229190
179179 −0.131662 −0.00984091 −0.00492045 0.999988i 0.501566π-0.501566\pi
−0.00492045 + 0.999988i 0.501566π0.501566\pi
180180 0 0
181181 −7.73199 −0.574714 −0.287357 0.957824i 0.592777π-0.592777\pi
−0.287357 + 0.957824i 0.592777π0.592777\pi
182182 1.53156 0.113527
183183 0 0
184184 7.97820 0.588161
185185 −38.6056 −2.83834
186186 0 0
187187 −5.38539 −0.393819
188188 −1.33565 −0.0974124
189189 0 0
190190 9.71279 0.704640
191191 21.1027 1.52694 0.763468 0.645846i 0.223495π-0.223495\pi
0.763468 + 0.645846i 0.223495π0.223495\pi
192192 0 0
193193 5.66324 0.407649 0.203824 0.979007i 0.434663π-0.434663\pi
0.203824 + 0.979007i 0.434663π0.434663\pi
194194 −3.63889 −0.261257
195195 0 0
196196 9.78371 0.698836
197197 15.9148 1.13388 0.566941 0.823758i 0.308127π-0.308127\pi
0.566941 + 0.823758i 0.308127π0.308127\pi
198198 0 0
199199 4.26145 0.302086 0.151043 0.988527i 0.451737π-0.451737\pi
0.151043 + 0.988527i 0.451737π0.451737\pi
200200 −21.2536 −1.50286
201201 0 0
202202 −2.62520 −0.184708
203203 3.73730 0.262307
204204 0 0
205205 2.80268 0.195748
206206 −4.30636 −0.300038
207207 0 0
208208 3.99685 0.277131
209209 15.6375 1.08167
210210 0 0
211211 −11.5083 −0.792263 −0.396131 0.918194i 0.629648π-0.629648\pi
−0.396131 + 0.918194i 0.629648π0.629648\pi
212212 −5.45152 −0.374412
213213 0 0
214214 −1.60471 −0.109696
215215 −26.5343 −1.80962
216216 0 0
217217 0 0
218218 1.01826 0.0689654
219219 0 0
220220 −23.2635 −1.56842
221221 3.80748 0.256119
222222 0 0
223223 −9.42391 −0.631072 −0.315536 0.948914i 0.602184π-0.602184\pi
−0.315536 + 0.948914i 0.602184π0.602184\pi
224224 4.43338 0.296218
225225 0 0
226226 −4.39934 −0.292640
227227 −21.7630 −1.44446 −0.722231 0.691652i 0.756883π-0.756883\pi
−0.722231 + 0.691652i 0.756883π0.756883\pi
228228 0 0
229229 −16.9559 −1.12048 −0.560238 0.828331i 0.689291π-0.689291\pi
−0.560238 + 0.828331i 0.689291π0.689291\pi
230230 8.39224 0.553368
231231 0 0
232232 −11.8973 −0.781096
233233 9.83611 0.644385 0.322192 0.946674i 0.395580π-0.395580\pi
0.322192 + 0.946674i 0.395580π0.395580\pi
234234 0 0
235235 −3.24803 −0.211878
236236 1.41372 0.0920250
237237 0 0
238238 0.688748 0.0446449
239239 0.590635 0.0382050 0.0191025 0.999818i 0.493919π-0.493919\pi
0.0191025 + 0.999818i 0.493919π0.493919\pi
240240 0 0
241241 −15.3704 −0.990097 −0.495049 0.868865i 0.664850π-0.664850\pi
−0.495049 + 0.868865i 0.664850π0.664850\pi
242242 4.09445 0.263201
243243 0 0
244244 3.53256 0.226149
245245 23.7920 1.52001
246246 0 0
247247 −11.0557 −0.703459
248248 0 0
249249 0 0
250250 −9.57510 −0.605582
251251 −6.05150 −0.381967 −0.190984 0.981593i 0.561168π-0.561168\pi
−0.190984 + 0.981593i 0.561168π0.561168\pi
252252 0 0
253253 13.5114 0.849455
254254 0.987363 0.0619527
255255 0 0
256256 −9.92482 −0.620301
257257 4.52784 0.282439 0.141219 0.989978i 0.454898π-0.454898\pi
0.141219 + 0.989978i 0.454898π0.454898\pi
258258 0 0
259259 7.94906 0.493930
260260 16.4473 1.02002
261261 0 0
262262 −4.33891 −0.268059
263263 −2.50886 −0.154703 −0.0773516 0.997004i 0.524646π-0.524646\pi
−0.0773516 + 0.997004i 0.524646π0.524646\pi
264264 0 0
265265 −13.2570 −0.814370
266266 −1.99991 −0.122622
267267 0 0
268268 3.18168 0.194352
269269 13.3398 0.813340 0.406670 0.913575i 0.366690π-0.366690\pi
0.406670 + 0.913575i 0.366690π0.366690\pi
270270 0 0
271271 −13.8242 −0.839759 −0.419879 0.907580i 0.637928π-0.637928\pi
−0.419879 + 0.907580i 0.637928π0.637928\pi
272272 1.79739 0.108983
273273 0 0
274274 8.79097 0.531082
275275 −35.9939 −2.17051
276276 0 0
277277 −11.5707 −0.695219 −0.347609 0.937639i 0.613006π-0.613006\pi
−0.347609 + 0.937639i 0.613006π0.613006\pi
278278 −12.9030 −0.773870
279279 0 0
280280 6.87814 0.411048
281281 15.3993 0.918648 0.459324 0.888269i 0.348092π-0.348092\pi
0.459324 + 0.888269i 0.348092π0.348092\pi
282282 0 0
283283 −22.6957 −1.34912 −0.674560 0.738220i 0.735667π-0.735667\pi
−0.674560 + 0.738220i 0.735667π0.735667\pi
284284 −11.7944 −0.699871
285285 0 0
286286 −8.25698 −0.488245
287287 −0.577084 −0.0340642
288288 0 0
289289 −15.2878 −0.899280
290290 −12.5147 −0.734890
291291 0 0
292292 −8.62539 −0.504763
293293 −12.4009 −0.724466 −0.362233 0.932088i 0.617986π-0.617986\pi
−0.362233 + 0.932088i 0.617986π0.617986\pi
294294 0 0
295295 3.43787 0.200160
296296 −25.3050 −1.47082
297297 0 0
298298 13.8831 0.804229
299299 −9.55259 −0.552441
300300 0 0
301301 5.46353 0.314912
302302 −10.5992 −0.609915
303303 0 0
304304 −5.21907 −0.299334
305305 8.59046 0.491888
306306 0 0
307307 30.7200 1.75328 0.876641 0.481145i 0.159779π-0.159779\pi
0.876641 + 0.481145i 0.159779π0.159779\pi
308308 4.79005 0.272938
309309 0 0
310310 0 0
311311 −2.38141 −0.135037 −0.0675187 0.997718i 0.521508π-0.521508\pi
−0.0675187 + 0.997718i 0.521508π0.521508\pi
312312 0 0
313313 −10.7456 −0.607377 −0.303688 0.952771i 0.598218π-0.598218\pi
−0.303688 + 0.952771i 0.598218π0.598218\pi
314314 10.4439 0.589385
315315 0 0
316316 −21.4888 −1.20884
317317 −8.74635 −0.491244 −0.245622 0.969366i 0.578992π-0.578992\pi
−0.245622 + 0.969366i 0.578992π0.578992\pi
318318 0 0
319319 −20.1486 −1.12810
320320 −4.66033 −0.260520
321321 0 0
322322 −1.72800 −0.0962977
323323 −4.97179 −0.276638
324324 0 0
325325 25.4477 1.41159
326326 −0.720430 −0.0399009
327327 0 0
328328 1.83709 0.101436
329329 0.668784 0.0368713
330330 0 0
331331 32.3691 1.77917 0.889583 0.456773i 0.150995π-0.150995\pi
0.889583 + 0.456773i 0.150995π0.150995\pi
332332 21.5086 1.18044
333333 0 0
334334 −7.78396 −0.425919
335335 7.73721 0.422729
336336 0 0
337337 −27.7338 −1.51076 −0.755378 0.655289i 0.772547π-0.772547\pi
−0.755378 + 0.655289i 0.772547π0.772547\pi
338338 −3.12571 −0.170016
339339 0 0
340340 7.39640 0.401126
341341 0 0
342342 0 0
343343 −10.2426 −0.553050
344344 −17.3926 −0.937745
345345 0 0
346346 14.2399 0.765540
347347 −25.9161 −1.39125 −0.695624 0.718407i 0.744872π-0.744872\pi
−0.695624 + 0.718407i 0.744872π0.744872\pi
348348 0 0
349349 5.59393 0.299436 0.149718 0.988729i 0.452163π-0.452163\pi
0.149718 + 0.988729i 0.452163π0.452163\pi
350350 4.60333 0.246058
351351 0 0
352352 −23.9013 −1.27394
353353 11.6690 0.621077 0.310538 0.950561i 0.399491π-0.399491\pi
0.310538 + 0.950561i 0.399491π0.399491\pi
354354 0 0
355355 −28.6817 −1.52226
356356 6.76131 0.358349
357357 0 0
358358 −0.0907803 −0.00479789
359359 −26.1998 −1.38278 −0.691388 0.722484i 0.743000π-0.743000\pi
−0.691388 + 0.722484i 0.743000π0.743000\pi
360360 0 0
361361 −4.56348 −0.240183
362362 −5.33115 −0.280199
363363 0 0
364364 −3.38657 −0.177505
365365 −20.9752 −1.09789
366366 0 0
367367 −27.0146 −1.41015 −0.705076 0.709132i 0.749087π-0.749087\pi
−0.705076 + 0.709132i 0.749087π0.749087\pi
368368 −4.50948 −0.235073
369369 0 0
370370 −26.6183 −1.38382
371371 2.72967 0.141717
372372 0 0
373373 −12.4058 −0.642351 −0.321175 0.947020i 0.604078π-0.604078\pi
−0.321175 + 0.947020i 0.604078π0.604078\pi
374374 −3.71319 −0.192004
375375 0 0
376376 −2.12900 −0.109795
377377 14.2451 0.733658
378378 0 0
379379 −4.63901 −0.238290 −0.119145 0.992877i 0.538015π-0.538015\pi
−0.119145 + 0.992877i 0.538015π0.538015\pi
380380 −21.4768 −1.10174
381381 0 0
382382 14.5501 0.744450
383383 −5.02133 −0.256578 −0.128289 0.991737i 0.540949π-0.540949\pi
−0.128289 + 0.991737i 0.540949π0.540949\pi
384384 0 0
385385 11.6484 0.593659
386386 3.90476 0.198747
387387 0 0
388388 8.04629 0.408488
389389 18.6018 0.943151 0.471575 0.881826i 0.343686π-0.343686\pi
0.471575 + 0.881826i 0.343686π0.343686\pi
390390 0 0
391391 −4.29583 −0.217249
392392 15.5951 0.787670
393393 0 0
394394 10.9731 0.552819
395395 −52.2564 −2.62930
396396 0 0
397397 32.5588 1.63408 0.817040 0.576581i 0.195614π-0.195614\pi
0.817040 + 0.576581i 0.195614π0.195614\pi
398398 2.93824 0.147281
399399 0 0
400400 12.0131 0.600655
401401 −12.3903 −0.618740 −0.309370 0.950942i 0.600118π-0.600118\pi
−0.309370 + 0.950942i 0.600118π0.600118\pi
402402 0 0
403403 0 0
404404 5.80481 0.288800
405405 0 0
406406 2.57684 0.127886
407407 −42.8551 −2.12425
408408 0 0
409409 3.44808 0.170497 0.0852484 0.996360i 0.472832π-0.472832\pi
0.0852484 + 0.996360i 0.472832π0.472832\pi
410410 1.93243 0.0954358
411411 0 0
412412 9.52218 0.469124
413413 −0.707872 −0.0348321
414414 0 0
415415 52.3046 2.56753
416416 16.8983 0.828506
417417 0 0
418418 10.7819 0.527361
419419 40.0471 1.95643 0.978216 0.207592i 0.0665626π-0.0665626\pi
0.978216 + 0.207592i 0.0665626π0.0665626\pi
420420 0 0
421421 21.6844 1.05683 0.528417 0.848985i 0.322786π-0.322786\pi
0.528417 + 0.848985i 0.322786π0.322786\pi
422422 −7.93488 −0.386264
423423 0 0
424424 −8.68963 −0.422006
425425 11.4439 0.555112
426426 0 0
427427 −1.76881 −0.0855989
428428 3.54833 0.171515
429429 0 0
430430 −18.2952 −0.882273
431431 11.6207 0.559748 0.279874 0.960037i 0.409707π-0.409707\pi
0.279874 + 0.960037i 0.409707π0.409707\pi
432432 0 0
433433 −24.5964 −1.18203 −0.591015 0.806661i 0.701272π-0.701272\pi
−0.591015 + 0.806661i 0.701272π0.701272\pi
434434 0 0
435435 0 0
436436 −2.25157 −0.107831
437437 12.4737 0.596700
438438 0 0
439439 18.1932 0.868316 0.434158 0.900837i 0.357046π-0.357046\pi
0.434158 + 0.900837i 0.357046π0.357046\pi
440440 −37.0816 −1.76779
441441 0 0
442442 2.62523 0.124869
443443 −17.7603 −0.843819 −0.421909 0.906638i 0.638640π-0.638640\pi
−0.421909 + 0.906638i 0.638640π0.638640\pi
444444 0 0
445445 16.4421 0.779432
446446 −6.49772 −0.307676
447447 0 0
448448 0.959582 0.0453360
449449 −9.19857 −0.434107 −0.217054 0.976160i 0.569645π-0.569645\pi
−0.217054 + 0.976160i 0.569645π0.569645\pi
450450 0 0
451451 3.11119 0.146500
452452 9.72778 0.457556
453453 0 0
454454 −15.0054 −0.704241
455455 −8.23545 −0.386084
456456 0 0
457457 31.1999 1.45947 0.729735 0.683730i 0.239644π-0.239644\pi
0.729735 + 0.683730i 0.239644π0.239644\pi
458458 −11.6910 −0.546283
459459 0 0
460460 −18.5568 −0.865218
461461 −6.66847 −0.310582 −0.155291 0.987869i 0.549631π-0.549631\pi
−0.155291 + 0.987869i 0.549631π0.549631\pi
462462 0 0
463463 −35.3185 −1.64139 −0.820694 0.571368i 0.806413π-0.806413\pi
−0.820694 + 0.571368i 0.806413π0.806413\pi
464464 6.72466 0.312184
465465 0 0
466466 6.78192 0.314167
467467 −35.9434 −1.66326 −0.831632 0.555327i 0.812593π-0.812593\pi
−0.831632 + 0.555327i 0.812593π0.812593\pi
468468 0 0
469469 −1.59312 −0.0735637
470470 −2.23949 −0.103300
471471 0 0
472472 2.25344 0.103723
473473 −29.4551 −1.35434
474474 0 0
475475 −33.2296 −1.52468
476476 −1.52295 −0.0698044
477477 0 0
478478 0.407239 0.0186267
479479 −33.2444 −1.51898 −0.759488 0.650521i 0.774550π-0.774550\pi
−0.759488 + 0.650521i 0.774550π0.774550\pi
480480 0 0
481481 30.2986 1.38150
482482 −10.5978 −0.482717
483483 0 0
484484 −9.05361 −0.411528
485485 19.5669 0.888489
486486 0 0
487487 −28.5154 −1.29215 −0.646077 0.763272i 0.723592π-0.723592\pi
−0.646077 + 0.763272i 0.723592π0.723592\pi
488488 5.63084 0.254896
489489 0 0
490490 16.4044 0.741075
491491 −27.9636 −1.26198 −0.630991 0.775790i 0.717351π-0.717351\pi
−0.630991 + 0.775790i 0.717351π0.717351\pi
492492 0 0
493493 6.40605 0.288514
494494 −7.62284 −0.342968
495495 0 0
496496 0 0
497497 5.90568 0.264906
498498 0 0
499499 41.3050 1.84906 0.924532 0.381104i 0.124456π-0.124456\pi
0.924532 + 0.381104i 0.124456π0.124456\pi
500500 21.1724 0.946857
501501 0 0
502502 −4.17247 −0.186226
503503 25.5860 1.14082 0.570412 0.821358i 0.306783π-0.306783\pi
0.570412 + 0.821358i 0.306783π0.306783\pi
504504 0 0
505505 14.1161 0.628159
506506 9.31602 0.414148
507507 0 0
508508 −2.18325 −0.0968660
509509 −24.4678 −1.08452 −0.542258 0.840212i 0.682430π-0.682430\pi
−0.542258 + 0.840212i 0.682430π0.682430\pi
510510 0 0
511511 4.31888 0.191056
512512 14.6534 0.647594
513513 0 0
514514 3.12191 0.137702
515515 23.1560 1.02038
516516 0 0
517517 −3.60556 −0.158572
518518 5.48082 0.240813
519519 0 0
520520 26.2167 1.14968
521521 −14.9656 −0.655654 −0.327827 0.944738i 0.606316π-0.606316\pi
−0.327827 + 0.944738i 0.606316π0.606316\pi
522522 0 0
523523 20.9656 0.916763 0.458381 0.888756i 0.348429π-0.348429\pi
0.458381 + 0.888756i 0.348429π0.348429\pi
524524 9.59415 0.419123
525525 0 0
526526 −1.72984 −0.0754247
527527 0 0
528528 0 0
529529 −12.2222 −0.531399
530530 −9.14059 −0.397042
531531 0 0
532532 4.42217 0.191726
533533 −2.19961 −0.0952759
534534 0 0
535535 8.62882 0.373056
536536 5.07155 0.219058
537537 0 0
538538 9.19768 0.396540
539539 26.4109 1.13760
540540 0 0
541541 1.73130 0.0744345 0.0372172 0.999307i 0.488151π-0.488151\pi
0.0372172 + 0.999307i 0.488151π0.488151\pi
542542 −9.53167 −0.409420
543543 0 0
544544 7.59920 0.325813
545545 −5.47536 −0.234539
546546 0 0
547547 −13.1214 −0.561032 −0.280516 0.959849i 0.590506π-0.590506\pi
−0.280516 + 0.959849i 0.590506π0.590506\pi
548548 −19.4385 −0.830372
549549 0 0
550550 −24.8175 −1.05822
551551 −18.6012 −0.792436
552552 0 0
553553 10.7598 0.457554
554554 −7.97795 −0.338950
555555 0 0
556556 28.5310 1.20998
557557 −28.0246 −1.18744 −0.593721 0.804671i 0.702342π-0.702342\pi
−0.593721 + 0.804671i 0.702342π0.702342\pi
558558 0 0
559559 20.8248 0.880794
560560 −3.88770 −0.164286
561561 0 0
562562 10.6177 0.447882
563563 −22.6519 −0.954662 −0.477331 0.878723i 0.658396π-0.658396\pi
−0.477331 + 0.878723i 0.658396π0.658396\pi
564564 0 0
565565 23.6560 0.995215
566566 −15.6485 −0.657757
567567 0 0
568568 −18.8001 −0.788836
569569 −46.4420 −1.94695 −0.973475 0.228792i 0.926522π-0.926522\pi
−0.973475 + 0.228792i 0.926522π0.926522\pi
570570 0 0
571571 12.4984 0.523040 0.261520 0.965198i 0.415776π-0.415776\pi
0.261520 + 0.965198i 0.415776π0.415776\pi
572572 18.2577 0.763395
573573 0 0
574574 −0.397896 −0.0166078
575575 −28.7117 −1.19736
576576 0 0
577577 −30.4843 −1.26908 −0.634539 0.772891i 0.718810π-0.718810\pi
−0.634539 + 0.772891i 0.718810π0.718810\pi
578578 −10.5408 −0.438440
579579 0 0
580580 27.6725 1.14904
581581 −10.7697 −0.446804
582582 0 0
583583 −14.7162 −0.609485
584584 −13.7487 −0.568926
585585 0 0
586586 −8.55030 −0.353210
587587 33.6581 1.38922 0.694609 0.719387i 0.255577π-0.255577\pi
0.694609 + 0.719387i 0.255577π0.255577\pi
588588 0 0
589589 0 0
590590 2.37039 0.0975872
591591 0 0
592592 14.3030 0.587851
593593 44.8879 1.84333 0.921663 0.387992i 0.126831π-0.126831\pi
0.921663 + 0.387992i 0.126831π0.126831\pi
594594 0 0
595595 −3.70351 −0.151829
596596 −30.6983 −1.25745
597597 0 0
598598 −6.58644 −0.269340
599599 19.5846 0.800206 0.400103 0.916470i 0.368974π-0.368974\pi
0.400103 + 0.916470i 0.368974π0.368974\pi
600600 0 0
601601 −30.4595 −1.24247 −0.621234 0.783625i 0.713368π-0.713368\pi
−0.621234 + 0.783625i 0.713368π0.713368\pi
602602 3.76706 0.153534
603603 0 0
604604 23.4368 0.953632
605605 −22.0165 −0.895099
606606 0 0
607607 −13.3746 −0.542857 −0.271428 0.962459i 0.587496π-0.587496\pi
−0.271428 + 0.962459i 0.587496π0.587496\pi
608608 −22.0657 −0.894882
609609 0 0
610610 5.92306 0.239818
611611 2.54914 0.103127
612612 0 0
613613 5.19521 0.209832 0.104916 0.994481i 0.466543π-0.466543\pi
0.104916 + 0.994481i 0.466543π0.466543\pi
614614 21.1812 0.854804
615615 0 0
616616 7.63526 0.307633
617617 30.0131 1.20828 0.604140 0.796878i 0.293517π-0.293517\pi
0.604140 + 0.796878i 0.293517π0.293517\pi
618618 0 0
619619 −18.3260 −0.736584 −0.368292 0.929710i 0.620057π-0.620057\pi
−0.368292 + 0.929710i 0.620057π0.620057\pi
620620 0 0
621621 0 0
622622 −1.64197 −0.0658369
623623 −3.38551 −0.135638
624624 0 0
625625 7.75849 0.310339
626626 −7.40901 −0.296123
627627 0 0
628628 −23.0935 −0.921532
629629 13.6254 0.543279
630630 0 0
631631 −10.3352 −0.411438 −0.205719 0.978611i 0.565953π-0.565953\pi
−0.205719 + 0.978611i 0.565953π0.565953\pi
632632 −34.2528 −1.36250
633633 0 0
634634 −6.03054 −0.239503
635635 −5.30922 −0.210690
636636 0 0
637637 −18.6725 −0.739833
638638 −13.8923 −0.550001
639639 0 0
640640 39.8493 1.57518
641641 0.101252 0.00399921 0.00199961 0.999998i 0.499364π-0.499364\pi
0.00199961 + 0.999998i 0.499364π0.499364\pi
642642 0 0
643643 13.7118 0.540742 0.270371 0.962756i 0.412854π-0.412854\pi
0.270371 + 0.962756i 0.412854π0.412854\pi
644644 3.82094 0.150566
645645 0 0
646646 −3.42801 −0.134873
647647 −10.8344 −0.425943 −0.212971 0.977058i 0.568314π-0.568314\pi
−0.212971 + 0.977058i 0.568314π0.568314\pi
648648 0 0
649649 3.81629 0.149803
650650 17.5460 0.688212
651651 0 0
652652 1.59301 0.0623870
653653 24.2522 0.949061 0.474531 0.880239i 0.342618π-0.342618\pi
0.474531 + 0.880239i 0.342618π0.342618\pi
654654 0 0
655655 23.3310 0.911619
656656 −1.03837 −0.0405415
657657 0 0
658658 0.461122 0.0179764
659659 8.53349 0.332418 0.166209 0.986091i 0.446847π-0.446847\pi
0.166209 + 0.986091i 0.446847π0.446847\pi
660660 0 0
661661 37.8842 1.47352 0.736762 0.676152i 0.236354π-0.236354\pi
0.736762 + 0.676152i 0.236354π0.236354\pi
662662 22.3183 0.867424
663663 0 0
664664 34.2844 1.33049
665665 10.7538 0.417015
666666 0 0
667667 −16.0722 −0.622316
668668 17.2118 0.665945
669669 0 0
670670 5.33475 0.206099
671671 9.53606 0.368136
672672 0 0
673673 −7.12011 −0.274460 −0.137230 0.990539i 0.543820π-0.543820\pi
−0.137230 + 0.990539i 0.543820π0.543820\pi
674674 −19.1223 −0.736562
675675 0 0
676676 6.91154 0.265829
677677 48.0610 1.84713 0.923567 0.383438i 0.125260π-0.125260\pi
0.923567 + 0.383438i 0.125260π0.125260\pi
678678 0 0
679679 −4.02892 −0.154616
680680 11.7897 0.452116
681681 0 0
682682 0 0
683683 −32.5731 −1.24638 −0.623188 0.782072i 0.714163π-0.714163\pi
−0.623188 + 0.782072i 0.714163π0.714163\pi
684684 0 0
685685 −47.2705 −1.80611
686686 −7.06222 −0.269637
687687 0 0
688688 9.83073 0.374793
689689 10.4044 0.396376
690690 0 0
691691 27.2531 1.03676 0.518378 0.855152i 0.326536π-0.326536\pi
0.518378 + 0.855152i 0.326536π0.326536\pi
692692 −31.4871 −1.19696
693693 0 0
694694 −17.8689 −0.678296
695695 69.3815 2.63179
696696 0 0
697697 −0.989173 −0.0374676
698698 3.85698 0.145989
699699 0 0
700700 −10.1788 −0.384724
701701 −8.48915 −0.320631 −0.160315 0.987066i 0.551251π-0.551251\pi
−0.160315 + 0.987066i 0.551251π0.551251\pi
702702 0 0
703703 −39.5638 −1.49218
704704 −5.17332 −0.194977
705705 0 0
706706 8.04567 0.302803
707707 −2.90657 −0.109313
708708 0 0
709709 23.3861 0.878283 0.439142 0.898418i 0.355283π-0.355283\pi
0.439142 + 0.898418i 0.355283π0.355283\pi
710710 −19.7758 −0.742172
711711 0 0
712712 10.7774 0.403901
713713 0 0
714714 0 0
715715 44.3991 1.66043
716716 0.200732 0.00750172
717717 0 0
718718 −18.0646 −0.674165
719719 12.9769 0.483956 0.241978 0.970282i 0.422204π-0.422204\pi
0.241978 + 0.970282i 0.422204π0.422204\pi
720720 0 0
721721 −4.76792 −0.177567
722722 −3.14649 −0.117100
723723 0 0
724724 11.7882 0.438104
725725 42.8156 1.59013
726726 0 0
727727 −12.4230 −0.460744 −0.230372 0.973103i 0.573994π-0.573994\pi
−0.230372 + 0.973103i 0.573994π0.573994\pi
728728 −5.39814 −0.200068
729729 0 0
730730 −14.4622 −0.535272
731731 9.36496 0.346376
732732 0 0
733733 −34.1573 −1.26163 −0.630815 0.775933i 0.717279π-0.717279\pi
−0.630815 + 0.775933i 0.717279π0.717279\pi
734734 −18.6264 −0.687512
735735 0 0
736736 −19.0657 −0.702769
737737 8.58888 0.316376
738738 0 0
739739 12.3749 0.455219 0.227610 0.973752i 0.426909π-0.426909\pi
0.227610 + 0.973752i 0.426909π0.426909\pi
740740 58.8580 2.16366
741741 0 0
742742 1.88209 0.0690936
743743 −16.2455 −0.595990 −0.297995 0.954567i 0.596318π-0.596318\pi
−0.297995 + 0.954567i 0.596318π0.596318\pi
744744 0 0
745745 −74.6520 −2.73504
746746 −8.55374 −0.313175
747747 0 0
748748 8.21057 0.300208
749749 −1.77671 −0.0649196
750750 0 0
751751 −10.7883 −0.393670 −0.196835 0.980437i 0.563066π-0.563066\pi
−0.196835 + 0.980437i 0.563066π0.563066\pi
752752 1.20337 0.0438823
753753 0 0
754754 9.82187 0.357691
755755 56.9936 2.07421
756756 0 0
757757 −41.1017 −1.49387 −0.746933 0.664900i 0.768474π-0.768474\pi
−0.746933 + 0.664900i 0.768474π0.768474\pi
758758 −3.19857 −0.116177
759759 0 0
760760 −34.2337 −1.24179
761761 19.6605 0.712693 0.356347 0.934354i 0.384022π-0.384022\pi
0.356347 + 0.934354i 0.384022π0.384022\pi
762762 0 0
763763 1.12740 0.0408146
764764 −32.1731 −1.16398
765765 0 0
766766 −3.46217 −0.125093
767767 −2.69812 −0.0974236
768768 0 0
769769 3.78834 0.136611 0.0683055 0.997664i 0.478241π-0.478241\pi
0.0683055 + 0.997664i 0.478241π0.478241\pi
770770 8.03151 0.289435
771771 0 0
772772 −8.63417 −0.310750
773773 −25.3696 −0.912480 −0.456240 0.889857i 0.650804π-0.650804\pi
−0.456240 + 0.889857i 0.650804π0.650804\pi
774774 0 0
775775 0 0
776776 12.8256 0.460414
777777 0 0
778778 12.8258 0.459828
779779 2.87225 0.102909
780780 0 0
781781 −31.8388 −1.13928
782782 −2.96194 −0.105919
783783 0 0
784784 −8.81473 −0.314812
785785 −56.1588 −2.00439
786786 0 0
787787 25.9466 0.924896 0.462448 0.886646i 0.346971π-0.346971\pi
0.462448 + 0.886646i 0.346971π0.346971\pi
788788 −24.2637 −0.864359
789789 0 0
790790 −36.0304 −1.28190
791791 −4.87087 −0.173188
792792 0 0
793793 −6.74201 −0.239416
794794 22.4491 0.796687
795795 0 0
796796 −6.49701 −0.230280
797797 −18.5026 −0.655396 −0.327698 0.944782i 0.606273π-0.606273\pi
−0.327698 + 0.944782i 0.606273π0.606273\pi
798798 0 0
799799 1.14635 0.0405551
800800 50.7902 1.79570
801801 0 0
802802 −8.54300 −0.301664
803803 −23.2840 −0.821676
804804 0 0
805805 9.29174 0.327491
806806 0 0
807807 0 0
808808 9.25276 0.325511
809809 36.7478 1.29199 0.645993 0.763344i 0.276444π-0.276444\pi
0.645993 + 0.763344i 0.276444π0.276444\pi
810810 0 0
811811 −39.4301 −1.38458 −0.692289 0.721620i 0.743398π-0.743398\pi
−0.692289 + 0.721620i 0.743398π0.743398\pi
812812 −5.69788 −0.199956
813813 0 0
814814 −29.5483 −1.03567
815815 3.87387 0.135696
816816 0 0
817817 −27.1929 −0.951359
818818 2.37743 0.0831248
819819 0 0
820820 −4.27297 −0.149218
821821 1.48058 0.0516727 0.0258363 0.999666i 0.491775π-0.491775\pi
0.0258363 + 0.999666i 0.491775π0.491775\pi
822822 0 0
823823 38.8652 1.35476 0.677378 0.735635i 0.263116π-0.263116\pi
0.677378 + 0.735635i 0.263116π0.263116\pi
824824 15.1782 0.528758
825825 0 0
826826 −0.488073 −0.0169822
827827 33.9363 1.18008 0.590040 0.807374i 0.299112π-0.299112\pi
0.590040 + 0.807374i 0.299112π0.299112\pi
828828 0 0
829829 −16.5307 −0.574135 −0.287067 0.957910i 0.592680π-0.592680\pi
−0.287067 + 0.957910i 0.592680π0.592680\pi
830830 36.0636 1.25179
831831 0 0
832832 3.65754 0.126802
833833 −8.39710 −0.290942
834834 0 0
835835 41.8556 1.44847
836836 −23.8409 −0.824555
837837 0 0
838838 27.6122 0.953848
839839 54.0781 1.86698 0.933491 0.358600i 0.116746π-0.116746\pi
0.933491 + 0.358600i 0.116746π0.116746\pi
840840 0 0
841841 −5.03279 −0.173545
842842 14.9512 0.515254
843843 0 0
844844 17.5455 0.603942
845845 16.8075 0.578194
846846 0 0
847847 4.53330 0.155766
848848 4.91160 0.168665
849849 0 0
850850 7.89051 0.270642
851851 −34.1847 −1.17184
852852 0 0
853853 39.5762 1.35506 0.677532 0.735493i 0.263050π-0.263050\pi
0.677532 + 0.735493i 0.263050π0.263050\pi
854854 −1.21958 −0.0417333
855855 0 0
856856 5.65598 0.193317
857857 −12.7250 −0.434679 −0.217340 0.976096i 0.569738π-0.569738\pi
−0.217340 + 0.976096i 0.569738π0.569738\pi
858858 0 0
859859 21.1543 0.721777 0.360888 0.932609i 0.382474π-0.382474\pi
0.360888 + 0.932609i 0.382474π0.382474\pi
860860 40.4542 1.37948
861861 0 0
862862 8.01237 0.272902
863863 9.33974 0.317928 0.158964 0.987284i 0.449185π-0.449185\pi
0.158964 + 0.987284i 0.449185π0.449185\pi
864864 0 0
865865 −76.5702 −2.60346
866866 −16.9591 −0.576292
867867 0 0
868868 0 0
869869 −58.0085 −1.96780
870870 0 0
871871 −6.07235 −0.205754
872872 −3.58896 −0.121538
873873 0 0
874874 8.60055 0.290918
875875 −10.6014 −0.358392
876876 0 0
877877 22.4353 0.757585 0.378792 0.925482i 0.376339π-0.376339\pi
0.378792 + 0.925482i 0.376339π0.376339\pi
878878 12.5441 0.423343
879879 0 0
880880 20.9595 0.706543
881881 −46.4315 −1.56432 −0.782158 0.623080i 0.785881π-0.785881\pi
−0.782158 + 0.623080i 0.785881π0.785881\pi
882882 0 0
883883 −36.5396 −1.22965 −0.614827 0.788662i 0.710774π-0.710774\pi
−0.614827 + 0.788662i 0.710774π0.710774\pi
884884 −5.80488 −0.195239
885885 0 0
886886 −12.2456 −0.411400
887887 −28.6850 −0.963150 −0.481575 0.876405i 0.659935π-0.659935\pi
−0.481575 + 0.876405i 0.659935π0.659935\pi
888888 0 0
889889 1.09319 0.0366644
890890 11.3367 0.380008
891891 0 0
892892 14.3677 0.481066
893893 −3.32865 −0.111389
894894 0 0
895895 0.488140 0.0163167
896896 −8.20514 −0.274114
897897 0 0
898898 −6.34235 −0.211647
899899 0 0
900900 0 0
901901 4.67889 0.155877
902902 2.14514 0.0714254
903903 0 0
904904 15.5059 0.515719
905905 28.6665 0.952906
906906 0 0
907907 −22.1896 −0.736794 −0.368397 0.929669i 0.620093π-0.620093\pi
−0.368397 + 0.929669i 0.620093π0.620093\pi
908908 33.1799 1.10111
909909 0 0
910910 −5.67829 −0.188233
911911 −28.8324 −0.955261 −0.477631 0.878561i 0.658504π-0.658504\pi
−0.477631 + 0.878561i 0.658504π0.658504\pi
912912 0 0
913913 58.0620 1.92157
914914 21.5121 0.711557
915915 0 0
916916 25.8510 0.854139
917917 −4.80396 −0.158641
918918 0 0
919919 48.0623 1.58543 0.792715 0.609592i 0.208667π-0.208667\pi
0.792715 + 0.609592i 0.208667π0.208667\pi
920920 −29.5793 −0.975201
921921 0 0
922922 −4.59786 −0.151423
923923 22.5101 0.740928
924924 0 0
925925 91.0668 2.99426
926926 −24.3518 −0.800251
927927 0 0
928928 28.4312 0.933300
929929 7.01617 0.230193 0.115097 0.993354i 0.463282π-0.463282\pi
0.115097 + 0.993354i 0.463282π0.463282\pi
930930 0 0
931931 24.3825 0.799105
932932 −14.9961 −0.491214
933933 0 0
934934 −24.7827 −0.810916
935935 19.9664 0.652972
936936 0 0
937937 −12.8807 −0.420793 −0.210396 0.977616i 0.567475π-0.567475\pi
−0.210396 + 0.977616i 0.567475π0.567475\pi
938938 −1.09845 −0.0358656
939939 0 0
940940 4.95195 0.161515
941941 −50.0392 −1.63123 −0.815616 0.578593i 0.803602π-0.803602\pi
−0.815616 + 0.578593i 0.803602π0.803602\pi
942942 0 0
943943 2.48174 0.0808165
944944 −1.27370 −0.0414555
945945 0 0
946946 −20.3090 −0.660304
947947 51.8679 1.68548 0.842741 0.538320i 0.180941π-0.180941\pi
0.842741 + 0.538320i 0.180941π0.180941\pi
948948 0 0
949949 16.4619 0.534374
950950 −22.9115 −0.743349
951951 0 0
952952 −2.42756 −0.0786777
953953 18.7352 0.606893 0.303447 0.952848i 0.401863π-0.401863\pi
0.303447 + 0.952848i 0.401863π0.401863\pi
954954 0 0
955955 −78.2385 −2.53174
956956 −0.900482 −0.0291237
957957 0 0
958958 −22.9218 −0.740569
959959 9.73320 0.314301
960960 0 0
961961 0 0
962962 20.8907 0.673542
963963 0 0
964964 23.4338 0.754751
965965 −20.9965 −0.675902
966966 0 0
967967 47.7846 1.53665 0.768324 0.640061i 0.221091π-0.221091\pi
0.768324 + 0.640061i 0.221091π0.221091\pi
968968 −14.4313 −0.463839
969969 0 0
970970 13.4913 0.433178
971971 31.1007 0.998068 0.499034 0.866583i 0.333688π-0.333688\pi
0.499034 + 0.866583i 0.333688π0.333688\pi
972972 0 0
973973 −14.2860 −0.457987
974974 −19.6611 −0.629983
975975 0 0
976976 −3.18269 −0.101876
977977 22.0791 0.706375 0.353187 0.935553i 0.385098π-0.385098\pi
0.353187 + 0.935553i 0.385098π0.385098\pi
978978 0 0
979979 18.2520 0.583337
980980 −36.2733 −1.15871
981981 0 0
982982 −19.2807 −0.615273
983983 −37.5769 −1.19852 −0.599258 0.800556i 0.704538π-0.704538\pi
−0.599258 + 0.800556i 0.704538π0.704538\pi
984984 0 0
985985 −59.0044 −1.88004
986986 4.41693 0.140664
987987 0 0
988988 16.8555 0.536246
989989 −23.4958 −0.747122
990990 0 0
991991 6.77397 0.215182 0.107591 0.994195i 0.465686π-0.465686\pi
0.107591 + 0.994195i 0.465686π0.465686\pi
992992 0 0
993993 0 0
994994 4.07192 0.129154
995995 −15.7994 −0.500875
996996 0 0
997997 −29.5733 −0.936595 −0.468298 0.883571i 0.655132π-0.655132\pi
−0.468298 + 0.883571i 0.655132π0.655132\pi
998998 28.4795 0.901502
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8649.2.a.be.1.6 8
3.2 odd 2 961.2.a.j.1.3 8
31.22 odd 30 279.2.y.c.19.1 16
31.24 odd 30 279.2.y.c.235.1 16
31.30 odd 2 8649.2.a.bf.1.6 8
93.2 odd 10 961.2.d.q.531.1 16
93.5 odd 6 961.2.c.i.521.3 16
93.8 odd 10 961.2.d.n.374.4 16
93.11 even 30 961.2.g.k.338.2 16
93.14 odd 30 961.2.g.j.816.2 16
93.17 even 30 961.2.g.k.816.2 16
93.20 odd 30 961.2.g.j.338.2 16
93.23 even 10 961.2.d.o.374.4 16
93.26 even 6 961.2.c.j.521.3 16
93.29 even 10 961.2.d.p.531.1 16
93.35 odd 10 961.2.d.n.388.4 16
93.38 odd 30 961.2.g.l.235.2 16
93.41 odd 30 961.2.g.m.844.1 16
93.44 even 30 961.2.g.t.448.1 16
93.47 odd 10 961.2.d.q.628.1 16
93.50 odd 30 961.2.g.n.547.1 16
93.53 even 30 31.2.g.a.19.2 yes 16
93.56 odd 6 961.2.c.i.439.3 16
93.59 odd 30 961.2.g.m.846.1 16
93.65 even 30 961.2.g.s.846.1 16
93.68 even 6 961.2.c.j.439.3 16
93.71 odd 30 961.2.g.l.732.2 16
93.74 even 30 961.2.g.t.547.1 16
93.77 even 10 961.2.d.p.628.1 16
93.80 odd 30 961.2.g.n.448.1 16
93.83 even 30 961.2.g.s.844.1 16
93.86 even 30 31.2.g.a.18.2 16
93.89 even 10 961.2.d.o.388.4 16
93.92 even 2 961.2.a.i.1.3 8
372.179 odd 30 496.2.bg.c.49.1 16
372.239 odd 30 496.2.bg.c.81.1 16
465.53 odd 60 775.2.ck.a.174.3 32
465.179 even 30 775.2.bl.a.576.1 16
465.239 even 30 775.2.bl.a.701.1 16
465.272 odd 60 775.2.ck.a.49.3 32
465.332 odd 60 775.2.ck.a.174.2 32
465.458 odd 60 775.2.ck.a.49.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.18.2 16 93.86 even 30
31.2.g.a.19.2 yes 16 93.53 even 30
279.2.y.c.19.1 16 31.22 odd 30
279.2.y.c.235.1 16 31.24 odd 30
496.2.bg.c.49.1 16 372.179 odd 30
496.2.bg.c.81.1 16 372.239 odd 30
775.2.bl.a.576.1 16 465.179 even 30
775.2.bl.a.701.1 16 465.239 even 30
775.2.ck.a.49.2 32 465.458 odd 60
775.2.ck.a.49.3 32 465.272 odd 60
775.2.ck.a.174.2 32 465.332 odd 60
775.2.ck.a.174.3 32 465.53 odd 60
961.2.a.i.1.3 8 93.92 even 2
961.2.a.j.1.3 8 3.2 odd 2
961.2.c.i.439.3 16 93.56 odd 6
961.2.c.i.521.3 16 93.5 odd 6
961.2.c.j.439.3 16 93.68 even 6
961.2.c.j.521.3 16 93.26 even 6
961.2.d.n.374.4 16 93.8 odd 10
961.2.d.n.388.4 16 93.35 odd 10
961.2.d.o.374.4 16 93.23 even 10
961.2.d.o.388.4 16 93.89 even 10
961.2.d.p.531.1 16 93.29 even 10
961.2.d.p.628.1 16 93.77 even 10
961.2.d.q.531.1 16 93.2 odd 10
961.2.d.q.628.1 16 93.47 odd 10
961.2.g.j.338.2 16 93.20 odd 30
961.2.g.j.816.2 16 93.14 odd 30
961.2.g.k.338.2 16 93.11 even 30
961.2.g.k.816.2 16 93.17 even 30
961.2.g.l.235.2 16 93.38 odd 30
961.2.g.l.732.2 16 93.71 odd 30
961.2.g.m.844.1 16 93.41 odd 30
961.2.g.m.846.1 16 93.59 odd 30
961.2.g.n.448.1 16 93.80 odd 30
961.2.g.n.547.1 16 93.50 odd 30
961.2.g.s.844.1 16 93.83 even 30
961.2.g.s.846.1 16 93.65 even 30
961.2.g.t.448.1 16 93.44 even 30
961.2.g.t.547.1 16 93.74 even 30
8649.2.a.be.1.6 8 1.1 even 1 trivial
8649.2.a.bf.1.6 8 31.30 odd 2