Properties

Label 2-320-1.1-c7-0-10
Degree $2$
Conductor $320$
Sign $1$
Analytic cond. $99.9632$
Root an. cond. $9.99816$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 48·3-s − 125·5-s − 1.64e3·7-s + 117·9-s − 172·11-s − 3.86e3·13-s − 6.00e3·15-s − 1.22e4·17-s + 2.59e4·19-s − 7.89e4·21-s + 1.29e4·23-s + 1.56e4·25-s − 9.93e4·27-s + 8.16e4·29-s − 1.56e5·31-s − 8.25e3·33-s + 2.05e5·35-s − 1.10e5·37-s − 1.85e5·39-s + 4.67e5·41-s + 4.99e5·43-s − 1.46e4·45-s − 3.96e5·47-s + 1.87e6·49-s − 5.88e5·51-s + 1.28e6·53-s + 2.15e4·55-s + ⋯
L(s)  = 1  + 1.02·3-s − 0.447·5-s − 1.81·7-s + 0.0534·9-s − 0.0389·11-s − 0.487·13-s − 0.459·15-s − 0.604·17-s + 0.867·19-s − 1.85·21-s + 0.222·23-s + 1/5·25-s − 0.971·27-s + 0.621·29-s − 0.945·31-s − 0.0399·33-s + 0.810·35-s − 0.357·37-s − 0.500·39-s + 1.06·41-s + 0.957·43-s − 0.0239·45-s − 0.557·47-s + 2.28·49-s − 0.620·51-s + 1.18·53-s + 0.0174·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(320\)    =    \(2^{6} \cdot 5\)
Sign: $1$
Analytic conductor: \(99.9632\)
Root analytic conductor: \(9.99816\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 320,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.559426520\)
\(L(\frac12)\) \(\approx\) \(1.559426520\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + p^{3} T \)
good3 \( 1 - 16 p T + p^{7} T^{2} \)
7 \( 1 + 1644 T + p^{7} T^{2} \)
11 \( 1 + 172 T + p^{7} T^{2} \)
13 \( 1 + 3862 T + p^{7} T^{2} \)
17 \( 1 + 12254 T + p^{7} T^{2} \)
19 \( 1 - 25940 T + p^{7} T^{2} \)
23 \( 1 - 564 p T + p^{7} T^{2} \)
29 \( 1 - 81610 T + p^{7} T^{2} \)
31 \( 1 + 156888 T + p^{7} T^{2} \)
37 \( 1 + 110126 T + p^{7} T^{2} \)
41 \( 1 - 467882 T + p^{7} T^{2} \)
43 \( 1 - 499208 T + p^{7} T^{2} \)
47 \( 1 + 396884 T + p^{7} T^{2} \)
53 \( 1 - 1280498 T + p^{7} T^{2} \)
59 \( 1 - 1337420 T + p^{7} T^{2} \)
61 \( 1 - 923978 T + p^{7} T^{2} \)
67 \( 1 - 797304 T + p^{7} T^{2} \)
71 \( 1 - 5103392 T + p^{7} T^{2} \)
73 \( 1 + 4267478 T + p^{7} T^{2} \)
79 \( 1 + 960 T + p^{7} T^{2} \)
83 \( 1 + 6140832 T + p^{7} T^{2} \)
89 \( 1 - 2010570 T + p^{7} T^{2} \)
97 \( 1 + 4881934 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.13162299617811368029581234349, −9.371957971471402585297599000276, −8.725767779180783830068613400632, −7.54731977160391798175741050703, −6.78026660972686078230876078606, −5.58904095422811095091896412573, −4.00835488802654604122111920330, −3.17351561311018646626898923432, −2.42109502305476071984407007197, −0.54104954335733695571683375834, 0.54104954335733695571683375834, 2.42109502305476071984407007197, 3.17351561311018646626898923432, 4.00835488802654604122111920330, 5.58904095422811095091896412573, 6.78026660972686078230876078606, 7.54731977160391798175741050703, 8.725767779180783830068613400632, 9.371957971471402585297599000276, 10.13162299617811368029581234349

Graph of the $Z$-function along the critical line