L(s) = 1 | + (2.32 + 2.32i)3-s + (0.707 − 0.707i)5-s − 0.982i·7-s + 7.82i·9-s + (1.62 − 1.62i)11-s + (−0.690 − 0.690i)13-s + 3.28·15-s − 2.19·17-s + (−1.92 − 1.92i)19-s + (2.28 − 2.28i)21-s + 2.01i·23-s − 1.00i·25-s + (−11.2 + 11.2i)27-s + (−5.27 − 5.27i)29-s − 0.435·31-s + ⋯ |
L(s) = 1 | + (1.34 + 1.34i)3-s + (0.316 − 0.316i)5-s − 0.371i·7-s + 2.60i·9-s + (0.490 − 0.490i)11-s + (−0.191 − 0.191i)13-s + 0.849·15-s − 0.532·17-s + (−0.441 − 0.441i)19-s + (0.498 − 0.498i)21-s + 0.420i·23-s − 0.200i·25-s + (−2.15 + 2.15i)27-s + (−0.978 − 0.978i)29-s − 0.0781·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.557 - 0.830i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.557 - 0.830i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.78166 + 0.950157i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.78166 + 0.950157i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.707 + 0.707i)T \) |
good | 3 | \( 1 + (-2.32 - 2.32i)T + 3iT^{2} \) |
| 7 | \( 1 + 0.982iT - 7T^{2} \) |
| 11 | \( 1 + (-1.62 + 1.62i)T - 11iT^{2} \) |
| 13 | \( 1 + (0.690 + 0.690i)T + 13iT^{2} \) |
| 17 | \( 1 + 2.19T + 17T^{2} \) |
| 19 | \( 1 + (1.92 + 1.92i)T + 19iT^{2} \) |
| 23 | \( 1 - 2.01iT - 23T^{2} \) |
| 29 | \( 1 + (5.27 + 5.27i)T + 29iT^{2} \) |
| 31 | \( 1 + 0.435T + 31T^{2} \) |
| 37 | \( 1 + (5.79 - 5.79i)T - 37iT^{2} \) |
| 41 | \( 1 + 3.93iT - 41T^{2} \) |
| 43 | \( 1 + (-0.507 + 0.507i)T - 43iT^{2} \) |
| 47 | \( 1 - 9.21T + 47T^{2} \) |
| 53 | \( 1 + (-6.29 + 6.29i)T - 53iT^{2} \) |
| 59 | \( 1 + (-5.67 + 5.67i)T - 59iT^{2} \) |
| 61 | \( 1 + (3.60 + 3.60i)T + 61iT^{2} \) |
| 67 | \( 1 + (4.53 + 4.53i)T + 67iT^{2} \) |
| 71 | \( 1 - 10.3iT - 71T^{2} \) |
| 73 | \( 1 - 9.24iT - 73T^{2} \) |
| 79 | \( 1 + 15.4T + 79T^{2} \) |
| 83 | \( 1 + (-0.683 - 0.683i)T + 83iT^{2} \) |
| 89 | \( 1 + 5.44iT - 89T^{2} \) |
| 97 | \( 1 - 5.54T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.50469487829456717190338453447, −10.55229597552234797182944133633, −9.812231921978649597133476114656, −8.974876629632275636956181151706, −8.401746163462147500016589119775, −7.21607424936166234516508225610, −5.55574143730971205646307758081, −4.40912153767375379151585791299, −3.58901982868440714644626810033, −2.26847662515630972629507063813,
1.70961435925483631530039717175, 2.64006209011260313467411738457, 3.95974038263984441374759071592, 5.91600465655867296964484728964, 6.93817077339998694128270177824, 7.52368578910402500039656226620, 8.814604844581719509380062168749, 9.127912757250589837672882681093, 10.45821353937183284835655903518, 11.88337152405043553905585572262