L(s) = 1 | + (2.32 + 2.32i)3-s + (0.707 − 0.707i)5-s − 0.982i·7-s + 7.82i·9-s + (1.62 − 1.62i)11-s + (−0.690 − 0.690i)13-s + 3.28·15-s − 2.19·17-s + (−1.92 − 1.92i)19-s + (2.28 − 2.28i)21-s + 2.01i·23-s − 1.00i·25-s + (−11.2 + 11.2i)27-s + (−5.27 − 5.27i)29-s − 0.435·31-s + ⋯ |
L(s) = 1 | + (1.34 + 1.34i)3-s + (0.316 − 0.316i)5-s − 0.371i·7-s + 2.60i·9-s + (0.490 − 0.490i)11-s + (−0.191 − 0.191i)13-s + 0.849·15-s − 0.532·17-s + (−0.441 − 0.441i)19-s + (0.498 − 0.498i)21-s + 0.420i·23-s − 0.200i·25-s + (−2.15 + 2.15i)27-s + (−0.978 − 0.978i)29-s − 0.0781·31-s + ⋯ |
Λ(s)=(=(320s/2ΓC(s)L(s)(0.557−0.830i)Λ(2−s)
Λ(s)=(=(320s/2ΓC(s+1/2)L(s)(0.557−0.830i)Λ(1−s)
Degree: |
2 |
Conductor: |
320
= 26⋅5
|
Sign: |
0.557−0.830i
|
Analytic conductor: |
2.55521 |
Root analytic conductor: |
1.59850 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ320(81,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 320, ( :1/2), 0.557−0.830i)
|
Particular Values
L(1) |
≈ |
1.78166+0.950157i |
L(21) |
≈ |
1.78166+0.950157i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−0.707+0.707i)T |
good | 3 | 1+(−2.32−2.32i)T+3iT2 |
| 7 | 1+0.982iT−7T2 |
| 11 | 1+(−1.62+1.62i)T−11iT2 |
| 13 | 1+(0.690+0.690i)T+13iT2 |
| 17 | 1+2.19T+17T2 |
| 19 | 1+(1.92+1.92i)T+19iT2 |
| 23 | 1−2.01iT−23T2 |
| 29 | 1+(5.27+5.27i)T+29iT2 |
| 31 | 1+0.435T+31T2 |
| 37 | 1+(5.79−5.79i)T−37iT2 |
| 41 | 1+3.93iT−41T2 |
| 43 | 1+(−0.507+0.507i)T−43iT2 |
| 47 | 1−9.21T+47T2 |
| 53 | 1+(−6.29+6.29i)T−53iT2 |
| 59 | 1+(−5.67+5.67i)T−59iT2 |
| 61 | 1+(3.60+3.60i)T+61iT2 |
| 67 | 1+(4.53+4.53i)T+67iT2 |
| 71 | 1−10.3iT−71T2 |
| 73 | 1−9.24iT−73T2 |
| 79 | 1+15.4T+79T2 |
| 83 | 1+(−0.683−0.683i)T+83iT2 |
| 89 | 1+5.44iT−89T2 |
| 97 | 1−5.54T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.50469487829456717190338453447, −10.55229597552234797182944133633, −9.812231921978649597133476114656, −8.974876629632275636956181151706, −8.401746163462147500016589119775, −7.21607424936166234516508225610, −5.55574143730971205646307758081, −4.40912153767375379151585791299, −3.58901982868440714644626810033, −2.26847662515630972629507063813,
1.70961435925483631530039717175, 2.64006209011260313467411738457, 3.95974038263984441374759071592, 5.91600465655867296964484728964, 6.93817077339998694128270177824, 7.52368578910402500039656226620, 8.814604844581719509380062168749, 9.127912757250589837672882681093, 10.45821353937183284835655903518, 11.88337152405043553905585572262