Properties

Label 2-320-16.5-c1-0-6
Degree 22
Conductor 320320
Sign 0.557+0.830i0.557 + 0.830i
Analytic cond. 2.555212.55521
Root an. cond. 1.598501.59850
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.32 − 2.32i)3-s + (0.707 + 0.707i)5-s + 0.982i·7-s − 7.82i·9-s + (1.62 + 1.62i)11-s + (−0.690 + 0.690i)13-s + 3.28·15-s − 2.19·17-s + (−1.92 + 1.92i)19-s + (2.28 + 2.28i)21-s − 2.01i·23-s + 1.00i·25-s + (−11.2 − 11.2i)27-s + (−5.27 + 5.27i)29-s − 0.435·31-s + ⋯
L(s)  = 1  + (1.34 − 1.34i)3-s + (0.316 + 0.316i)5-s + 0.371i·7-s − 2.60i·9-s + (0.490 + 0.490i)11-s + (−0.191 + 0.191i)13-s + 0.849·15-s − 0.532·17-s + (−0.441 + 0.441i)19-s + (0.498 + 0.498i)21-s − 0.420i·23-s + 0.200i·25-s + (−2.15 − 2.15i)27-s + (−0.978 + 0.978i)29-s − 0.0781·31-s + ⋯

Functional equation

Λ(s)=(320s/2ΓC(s)L(s)=((0.557+0.830i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.557 + 0.830i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(320s/2ΓC(s+1/2)L(s)=((0.557+0.830i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.557 + 0.830i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 320320    =    2652^{6} \cdot 5
Sign: 0.557+0.830i0.557 + 0.830i
Analytic conductor: 2.555212.55521
Root analytic conductor: 1.598501.59850
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ320(241,)\chi_{320} (241, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 320, ( :1/2), 0.557+0.830i)(2,\ 320,\ (\ :1/2),\ 0.557 + 0.830i)

Particular Values

L(1)L(1) \approx 1.781660.950157i1.78166 - 0.950157i
L(12)L(\frac12) \approx 1.781660.950157i1.78166 - 0.950157i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
good3 1+(2.32+2.32i)T3iT2 1 + (-2.32 + 2.32i)T - 3iT^{2}
7 10.982iT7T2 1 - 0.982iT - 7T^{2}
11 1+(1.621.62i)T+11iT2 1 + (-1.62 - 1.62i)T + 11iT^{2}
13 1+(0.6900.690i)T13iT2 1 + (0.690 - 0.690i)T - 13iT^{2}
17 1+2.19T+17T2 1 + 2.19T + 17T^{2}
19 1+(1.921.92i)T19iT2 1 + (1.92 - 1.92i)T - 19iT^{2}
23 1+2.01iT23T2 1 + 2.01iT - 23T^{2}
29 1+(5.275.27i)T29iT2 1 + (5.27 - 5.27i)T - 29iT^{2}
31 1+0.435T+31T2 1 + 0.435T + 31T^{2}
37 1+(5.79+5.79i)T+37iT2 1 + (5.79 + 5.79i)T + 37iT^{2}
41 13.93iT41T2 1 - 3.93iT - 41T^{2}
43 1+(0.5070.507i)T+43iT2 1 + (-0.507 - 0.507i)T + 43iT^{2}
47 19.21T+47T2 1 - 9.21T + 47T^{2}
53 1+(6.296.29i)T+53iT2 1 + (-6.29 - 6.29i)T + 53iT^{2}
59 1+(5.675.67i)T+59iT2 1 + (-5.67 - 5.67i)T + 59iT^{2}
61 1+(3.603.60i)T61iT2 1 + (3.60 - 3.60i)T - 61iT^{2}
67 1+(4.534.53i)T67iT2 1 + (4.53 - 4.53i)T - 67iT^{2}
71 1+10.3iT71T2 1 + 10.3iT - 71T^{2}
73 1+9.24iT73T2 1 + 9.24iT - 73T^{2}
79 1+15.4T+79T2 1 + 15.4T + 79T^{2}
83 1+(0.683+0.683i)T83iT2 1 + (-0.683 + 0.683i)T - 83iT^{2}
89 15.44iT89T2 1 - 5.44iT - 89T^{2}
97 15.54T+97T2 1 - 5.54T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.88337152405043553905585572262, −10.45821353937183284835655903518, −9.127912757250589837672882681093, −8.814604844581719509380062168749, −7.52368578910402500039656226620, −6.93817077339998694128270177824, −5.91600465655867296964484728964, −3.95974038263984441374759071592, −2.64006209011260313467411738457, −1.70961435925483631530039717175, 2.26847662515630972629507063813, 3.58901982868440714644626810033, 4.40912153767375379151585791299, 5.55574143730971205646307758081, 7.21607424936166234516508225610, 8.401746163462147500016589119775, 8.974876629632275636956181151706, 9.812231921978649597133476114656, 10.55229597552234797182944133633, 11.50469487829456717190338453447

Graph of the ZZ-function along the critical line