L(s) = 1 | + (−0.5 + 0.866i)5-s + (0.5 + 0.866i)7-s + (1 + 1.73i)11-s + (2.5 − 4.33i)13-s − 4·17-s − 5·19-s + (1 − 1.73i)23-s + (−0.499 − 0.866i)25-s + (−5 − 8.66i)29-s + (4 − 6.92i)31-s − 0.999·35-s − 3·37-s + (−3 + 5.19i)41-s + (−2 − 3.46i)43-s + (4 + 6.92i)47-s + ⋯ |
L(s) = 1 | + (−0.223 + 0.387i)5-s + (0.188 + 0.327i)7-s + (0.301 + 0.522i)11-s + (0.693 − 1.20i)13-s − 0.970·17-s − 1.14·19-s + (0.208 − 0.361i)23-s + (−0.0999 − 0.173i)25-s + (−0.928 − 1.60i)29-s + (0.718 − 1.24i)31-s − 0.169·35-s − 0.493·37-s + (−0.468 + 0.811i)41-s + (−0.304 − 0.528i)43-s + (0.583 + 1.01i)47-s + ⋯ |
Λ(s)=(=(3240s/2ΓC(s)L(s)(0.173+0.984i)Λ(2−s)
Λ(s)=(=(3240s/2ΓC(s+1/2)L(s)(0.173+0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
3240
= 23⋅34⋅5
|
Sign: |
0.173+0.984i
|
Analytic conductor: |
25.8715 |
Root analytic conductor: |
5.08640 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3240(1081,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3240, ( :1/2), 0.173+0.984i)
|
Particular Values
L(1) |
≈ |
1.211392381 |
L(21) |
≈ |
1.211392381 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(0.5−0.866i)T |
good | 7 | 1+(−0.5−0.866i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−1−1.73i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−2.5+4.33i)T+(−6.5−11.2i)T2 |
| 17 | 1+4T+17T2 |
| 19 | 1+5T+19T2 |
| 23 | 1+(−1+1.73i)T+(−11.5−19.9i)T2 |
| 29 | 1+(5+8.66i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−4+6.92i)T+(−15.5−26.8i)T2 |
| 37 | 1+3T+37T2 |
| 41 | 1+(3−5.19i)T+(−20.5−35.5i)T2 |
| 43 | 1+(2+3.46i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−4−6.92i)T+(−23.5+40.7i)T2 |
| 53 | 1−6T+53T2 |
| 59 | 1+(−2+3.46i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−2.5−4.33i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−3.5+6.06i)T+(−33.5−58.0i)T2 |
| 71 | 1−6T+71T2 |
| 73 | 1+9T+73T2 |
| 79 | 1+(1.5+2.59i)T+(−39.5+68.4i)T2 |
| 83 | 1+(1+1.73i)T+(−41.5+71.8i)T2 |
| 89 | 1+89T2 |
| 97 | 1+(3.5+6.06i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.376409790926206178647905351340, −7.891678216095794416998142827967, −6.93410475560692207718248810314, −6.24108497250037474737755153225, −5.57640740447330907711964446747, −4.45418684630574356493718713006, −3.89230188942959940168501655324, −2.72658674335477858753098944222, −1.96939720214591320692318070281, −0.38934661454709129745777601041,
1.18961209687811799822285303567, 2.10983549793916148648753275501, 3.48797558544588749895944457065, 4.11724954176897725403269792128, 4.89094855094810274813565626061, 5.80410108684647222389025687379, 6.81546060984119447939551891464, 7.04459811558493876626876272795, 8.398943981190422521671878335549, 8.722733822840764520888617058245