Properties

Label 3240.2.q.h
Level 32403240
Weight 22
Character orbit 3240.q
Analytic conductor 25.87225.872
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3240,2,Mod(1081,3240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3240, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3240.1081");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3240=23345 3240 = 2^{3} \cdot 3^{4} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3240.q (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 25.871530254925.8715302549
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 1080)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qζ6q5+(ζ6+1)q7+(2ζ6+2)q11+5ζ6q134q175q19+2ζ6q23+(ζ61)q25+(10ζ610)q29+8ζ6q31++(7ζ67)q97+O(q100) q - \zeta_{6} q^{5} + ( - \zeta_{6} + 1) q^{7} + ( - 2 \zeta_{6} + 2) q^{11} + 5 \zeta_{6} q^{13} - 4 q^{17} - 5 q^{19} + 2 \zeta_{6} q^{23} + (\zeta_{6} - 1) q^{25} + (10 \zeta_{6} - 10) q^{29} + 8 \zeta_{6} q^{31} + \cdots + (7 \zeta_{6} - 7) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq5+q7+2q11+5q138q1710q19+2q23q2510q29+8q312q356q376q414q43+8q47+6q49+12q534q55+4q59+7q97+O(q100) 2 q - q^{5} + q^{7} + 2 q^{11} + 5 q^{13} - 8 q^{17} - 10 q^{19} + 2 q^{23} - q^{25} - 10 q^{29} + 8 q^{31} - 2 q^{35} - 6 q^{37} - 6 q^{41} - 4 q^{43} + 8 q^{47} + 6 q^{49} + 12 q^{53} - 4 q^{55} + 4 q^{59}+ \cdots - 7 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3240Z)×\left(\mathbb{Z}/3240\mathbb{Z}\right)^\times.

nn 12971297 16211621 24312431 31613161
χ(n)\chi(n) 11 11 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1081.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 −0.500000 + 0.866025i 0 0.500000 + 0.866025i 0 0 0
2161.1 0 0 0 −0.500000 0.866025i 0 0.500000 0.866025i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3240.2.q.h 2
3.b odd 2 1 3240.2.q.t 2
9.c even 3 1 1080.2.a.i yes 1
9.c even 3 1 inner 3240.2.q.h 2
9.d odd 6 1 1080.2.a.c 1
9.d odd 6 1 3240.2.q.t 2
36.f odd 6 1 2160.2.a.t 1
36.h even 6 1 2160.2.a.g 1
45.h odd 6 1 5400.2.a.bc 1
45.j even 6 1 5400.2.a.ba 1
45.k odd 12 2 5400.2.f.k 2
45.l even 12 2 5400.2.f.t 2
72.j odd 6 1 8640.2.a.bp 1
72.l even 6 1 8640.2.a.bw 1
72.n even 6 1 8640.2.a.n 1
72.p odd 6 1 8640.2.a.q 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1080.2.a.c 1 9.d odd 6 1
1080.2.a.i yes 1 9.c even 3 1
2160.2.a.g 1 36.h even 6 1
2160.2.a.t 1 36.f odd 6 1
3240.2.q.h 2 1.a even 1 1 trivial
3240.2.q.h 2 9.c even 3 1 inner
3240.2.q.t 2 3.b odd 2 1
3240.2.q.t 2 9.d odd 6 1
5400.2.a.ba 1 45.j even 6 1
5400.2.a.bc 1 45.h odd 6 1
5400.2.f.k 2 45.k odd 12 2
5400.2.f.t 2 45.l even 12 2
8640.2.a.n 1 72.n even 6 1
8640.2.a.q 1 72.p odd 6 1
8640.2.a.bp 1 72.j odd 6 1
8640.2.a.bw 1 72.l even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(3240,[χ])S_{2}^{\mathrm{new}}(3240, [\chi]):

T72T7+1 T_{7}^{2} - T_{7} + 1 Copy content Toggle raw display
T1122T11+4 T_{11}^{2} - 2T_{11} + 4 Copy content Toggle raw display
T17+4 T_{17} + 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
77 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
1111 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
1313 T25T+25 T^{2} - 5T + 25 Copy content Toggle raw display
1717 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
1919 (T+5)2 (T + 5)^{2} Copy content Toggle raw display
2323 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
2929 T2+10T+100 T^{2} + 10T + 100 Copy content Toggle raw display
3131 T28T+64 T^{2} - 8T + 64 Copy content Toggle raw display
3737 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
4141 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
4343 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
4747 T28T+64 T^{2} - 8T + 64 Copy content Toggle raw display
5353 (T6)2 (T - 6)^{2} Copy content Toggle raw display
5959 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
6161 T25T+25 T^{2} - 5T + 25 Copy content Toggle raw display
6767 T27T+49 T^{2} - 7T + 49 Copy content Toggle raw display
7171 (T6)2 (T - 6)^{2} Copy content Toggle raw display
7373 (T+9)2 (T + 9)^{2} Copy content Toggle raw display
7979 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
8383 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2+7T+49 T^{2} + 7T + 49 Copy content Toggle raw display
show more
show less