L(s) = 1 | + (−0.5 + 0.866i)5-s + (0.5 + 0.866i)7-s + (1 + 1.73i)11-s + (2.5 − 4.33i)13-s − 4·17-s − 5·19-s + (1 − 1.73i)23-s + (−0.499 − 0.866i)25-s + (−5 − 8.66i)29-s + (4 − 6.92i)31-s − 0.999·35-s − 3·37-s + (−3 + 5.19i)41-s + (−2 − 3.46i)43-s + (4 + 6.92i)47-s + ⋯ |
L(s) = 1 | + (−0.223 + 0.387i)5-s + (0.188 + 0.327i)7-s + (0.301 + 0.522i)11-s + (0.693 − 1.20i)13-s − 0.970·17-s − 1.14·19-s + (0.208 − 0.361i)23-s + (−0.0999 − 0.173i)25-s + (−0.928 − 1.60i)29-s + (0.718 − 1.24i)31-s − 0.169·35-s − 0.493·37-s + (−0.468 + 0.811i)41-s + (−0.304 − 0.528i)43-s + (0.583 + 1.01i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.211392381\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.211392381\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
good | 7 | \( 1 + (-0.5 - 0.866i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1 - 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.5 + 4.33i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 4T + 17T^{2} \) |
| 19 | \( 1 + 5T + 19T^{2} \) |
| 23 | \( 1 + (-1 + 1.73i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (5 + 8.66i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-4 + 6.92i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 3T + 37T^{2} \) |
| 41 | \( 1 + (3 - 5.19i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2 + 3.46i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4 - 6.92i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 + (-2 + 3.46i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.5 - 4.33i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.5 + 6.06i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 6T + 71T^{2} \) |
| 73 | \( 1 + 9T + 73T^{2} \) |
| 79 | \( 1 + (1.5 + 2.59i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (1 + 1.73i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + (3.5 + 6.06i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.376409790926206178647905351340, −7.891678216095794416998142827967, −6.93410475560692207718248810314, −6.24108497250037474737755153225, −5.57640740447330907711964446747, −4.45418684630574356493718713006, −3.89230188942959940168501655324, −2.72658674335477858753098944222, −1.96939720214591320692318070281, −0.38934661454709129745777601041,
1.18961209687811799822285303567, 2.10983549793916148648753275501, 3.48797558544588749895944457065, 4.11724954176897725403269792128, 4.89094855094810274813565626061, 5.80410108684647222389025687379, 6.81546060984119447939551891464, 7.04459811558493876626876272795, 8.398943981190422521671878335549, 8.722733822840764520888617058245