L(s) = 1 | + (−0.173 + 0.984i)3-s + (−0.939 + 0.342i)4-s + (0.439 − 0.524i)5-s + (−0.939 − 0.342i)9-s + (−0.173 − 0.984i)12-s + (0.439 + 0.524i)15-s + (0.766 − 0.642i)16-s + (−0.233 + 0.642i)20-s + (0.592 + 1.62i)23-s + (0.0923 + 0.524i)25-s + (0.5 − 0.866i)27-s + (0.326 − 0.118i)31-s + 0.999·36-s + (−0.939 + 1.62i)37-s + (−0.592 + 0.342i)45-s + ⋯ |
L(s) = 1 | + (−0.173 + 0.984i)3-s + (−0.939 + 0.342i)4-s + (0.439 − 0.524i)5-s + (−0.939 − 0.342i)9-s + (−0.173 − 0.984i)12-s + (0.439 + 0.524i)15-s + (0.766 − 0.642i)16-s + (−0.233 + 0.642i)20-s + (0.592 + 1.62i)23-s + (0.0923 + 0.524i)25-s + (0.5 − 0.866i)27-s + (0.326 − 0.118i)31-s + 0.999·36-s + (−0.939 + 1.62i)37-s + (−0.592 + 0.342i)45-s + ⋯ |
Λ(s)=(=(3267s/2ΓC(s)L(s)(−0.396−0.918i)Λ(1−s)
Λ(s)=(=(3267s/2ΓC(s)L(s)(−0.396−0.918i)Λ(1−s)
Degree: |
2 |
Conductor: |
3267
= 33⋅112
|
Sign: |
−0.396−0.918i
|
Analytic conductor: |
1.63044 |
Root analytic conductor: |
1.27688 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3267(122,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3267, ( :0), −0.396−0.918i)
|
Particular Values
L(21) |
≈ |
0.8285332546 |
L(21) |
≈ |
0.8285332546 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.173−0.984i)T |
| 11 | 1 |
good | 2 | 1+(0.939−0.342i)T2 |
| 5 | 1+(−0.439+0.524i)T+(−0.173−0.984i)T2 |
| 7 | 1+(0.766+0.642i)T2 |
| 13 | 1+(−0.939−0.342i)T2 |
| 17 | 1+(0.5+0.866i)T2 |
| 19 | 1+(−0.5+0.866i)T2 |
| 23 | 1+(−0.592−1.62i)T+(−0.766+0.642i)T2 |
| 29 | 1+(0.939−0.342i)T2 |
| 31 | 1+(−0.326+0.118i)T+(0.766−0.642i)T2 |
| 37 | 1+(0.939−1.62i)T+(−0.5−0.866i)T2 |
| 41 | 1+(0.939+0.342i)T2 |
| 43 | 1+(0.173−0.984i)T2 |
| 47 | 1+(0.439−1.20i)T+(−0.766−0.642i)T2 |
| 53 | 1−1.96iT−T2 |
| 59 | 1+(−1.26+1.50i)T+(−0.173−0.984i)T2 |
| 61 | 1+(0.766+0.642i)T2 |
| 67 | 1+(0.0603−0.342i)T+(−0.939−0.342i)T2 |
| 71 | 1+(−1.11−0.642i)T+(0.5+0.866i)T2 |
| 73 | 1+(−0.5+0.866i)T2 |
| 79 | 1+(−0.939+0.342i)T2 |
| 83 | 1+(0.939−0.342i)T2 |
| 89 | 1+(1.5−0.866i)T+(0.5−0.866i)T2 |
| 97 | 1+(−1.17+0.984i)T+(0.173−0.984i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.212309334705313436622465708168, −8.500649698285444552211723301284, −7.86025401553258196937696328288, −6.75289819809402636083907571815, −5.64785702612269900454509086233, −5.18324758556152947685935760475, −4.54345887630728799729863111730, −3.65019555839717160049966558737, −2.97473811417611200024454703847, −1.29875893146418546164645615957,
0.57480218064960379523749741278, 1.88656625822407242026446373898, 2.78007155965612752466602809950, 3.90255912381001307393038261701, 4.97214837081066650101141859059, 5.57235417199948006801225353451, 6.48940886095712393827728523943, 6.86700539859842131713615084433, 7.950286028258937349553921911758, 8.566205431770709856485264672456