L(s) = 1 | + 1.38i·5-s + (0.866 + 0.5i)7-s + (−0.998 + 0.576i)11-s + (−1.65 − 3.20i)13-s + (0.781 − 1.35i)17-s + (−7.26 − 4.19i)19-s + (1.11 + 1.92i)23-s + 3.08·25-s + (1.43 + 2.48i)29-s + 6.65i·31-s + (−0.692 + 1.19i)35-s + (3.01 − 1.74i)37-s + (−10.8 + 6.27i)41-s + (−3.07 + 5.33i)43-s + 7.40i·47-s + ⋯ |
L(s) = 1 | + 0.619i·5-s + (0.327 + 0.188i)7-s + (−0.301 + 0.173i)11-s + (−0.458 − 0.888i)13-s + (0.189 − 0.328i)17-s + (−1.66 − 0.962i)19-s + (0.231 + 0.401i)23-s + 0.616·25-s + (0.266 + 0.461i)29-s + 1.19i·31-s + (−0.117 + 0.202i)35-s + (0.495 − 0.286i)37-s + (−1.69 + 0.980i)41-s + (−0.469 + 0.813i)43-s + 1.08i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 - 0.0599i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.998 - 0.0599i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.3135094543\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3135094543\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 13 | \( 1 + (1.65 + 3.20i)T \) |
good | 5 | \( 1 - 1.38iT - 5T^{2} \) |
| 11 | \( 1 + (0.998 - 0.576i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.781 + 1.35i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (7.26 + 4.19i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.11 - 1.92i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.43 - 2.48i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 6.65iT - 31T^{2} \) |
| 37 | \( 1 + (-3.01 + 1.74i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (10.8 - 6.27i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.07 - 5.33i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 7.40iT - 47T^{2} \) |
| 53 | \( 1 + 11.2T + 53T^{2} \) |
| 59 | \( 1 + (6.97 + 4.02i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.829 - 1.43i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.21 - 1.85i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (8.60 + 4.96i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 3.30iT - 73T^{2} \) |
| 79 | \( 1 - 4.64T + 79T^{2} \) |
| 83 | \( 1 + 1.82iT - 83T^{2} \) |
| 89 | \( 1 + (2.05 - 1.18i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (6.53 + 3.77i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.926767644387829563726759054751, −8.239978770492589758561182778491, −7.52101324353806833253211088844, −6.75275297428382288283162335305, −6.14607067665516878720371293935, −4.96911154923371773676514885196, −4.67200401978827975416721952345, −3.18146139637107332950062514206, −2.76328988808879524712243239636, −1.53199388859102603460161234296,
0.090358064393928066624774632116, 1.56150463914353849337620011411, 2.37735660485532666024508841213, 3.71183574604721569907754868601, 4.43635139730649648996983957604, 5.08560788182521583842170104695, 6.06912843886249595157109268313, 6.71840576511552826100738118483, 7.64688395988022864876898871930, 8.422787289343644551864277725347