L(s) = 1 | + 1.38i·5-s + (0.866 + 0.5i)7-s + (−0.998 + 0.576i)11-s + (−1.65 − 3.20i)13-s + (0.781 − 1.35i)17-s + (−7.26 − 4.19i)19-s + (1.11 + 1.92i)23-s + 3.08·25-s + (1.43 + 2.48i)29-s + 6.65i·31-s + (−0.692 + 1.19i)35-s + (3.01 − 1.74i)37-s + (−10.8 + 6.27i)41-s + (−3.07 + 5.33i)43-s + 7.40i·47-s + ⋯ |
L(s) = 1 | + 0.619i·5-s + (0.327 + 0.188i)7-s + (−0.301 + 0.173i)11-s + (−0.458 − 0.888i)13-s + (0.189 − 0.328i)17-s + (−1.66 − 0.962i)19-s + (0.231 + 0.401i)23-s + 0.616·25-s + (0.266 + 0.461i)29-s + 1.19i·31-s + (−0.117 + 0.202i)35-s + (0.495 − 0.286i)37-s + (−1.69 + 0.980i)41-s + (−0.469 + 0.813i)43-s + 1.08i·47-s + ⋯ |
Λ(s)=(=(3276s/2ΓC(s)L(s)(−0.998−0.0599i)Λ(2−s)
Λ(s)=(=(3276s/2ΓC(s+1/2)L(s)(−0.998−0.0599i)Λ(1−s)
Degree: |
2 |
Conductor: |
3276
= 22⋅32⋅7⋅13
|
Sign: |
−0.998−0.0599i
|
Analytic conductor: |
26.1589 |
Root analytic conductor: |
5.11458 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3276(1765,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3276, ( :1/2), −0.998−0.0599i)
|
Particular Values
L(1) |
≈ |
0.3135094543 |
L(21) |
≈ |
0.3135094543 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(−0.866−0.5i)T |
| 13 | 1+(1.65+3.20i)T |
good | 5 | 1−1.38iT−5T2 |
| 11 | 1+(0.998−0.576i)T+(5.5−9.52i)T2 |
| 17 | 1+(−0.781+1.35i)T+(−8.5−14.7i)T2 |
| 19 | 1+(7.26+4.19i)T+(9.5+16.4i)T2 |
| 23 | 1+(−1.11−1.92i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−1.43−2.48i)T+(−14.5+25.1i)T2 |
| 31 | 1−6.65iT−31T2 |
| 37 | 1+(−3.01+1.74i)T+(18.5−32.0i)T2 |
| 41 | 1+(10.8−6.27i)T+(20.5−35.5i)T2 |
| 43 | 1+(3.07−5.33i)T+(−21.5−37.2i)T2 |
| 47 | 1−7.40iT−47T2 |
| 53 | 1+11.2T+53T2 |
| 59 | 1+(6.97+4.02i)T+(29.5+51.0i)T2 |
| 61 | 1+(0.829−1.43i)T+(−30.5−52.8i)T2 |
| 67 | 1+(3.21−1.85i)T+(33.5−58.0i)T2 |
| 71 | 1+(8.60+4.96i)T+(35.5+61.4i)T2 |
| 73 | 1+3.30iT−73T2 |
| 79 | 1−4.64T+79T2 |
| 83 | 1+1.82iT−83T2 |
| 89 | 1+(2.05−1.18i)T+(44.5−77.0i)T2 |
| 97 | 1+(6.53+3.77i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.926767644387829563726759054751, −8.239978770492589758561182778491, −7.52101324353806833253211088844, −6.75275297428382288283162335305, −6.14607067665516878720371293935, −4.96911154923371773676514885196, −4.67200401978827975416721952345, −3.18146139637107332950062514206, −2.76328988808879524712243239636, −1.53199388859102603460161234296,
0.090358064393928066624774632116, 1.56150463914353849337620011411, 2.37735660485532666024508841213, 3.71183574604721569907754868601, 4.43635139730649648996983957604, 5.08560788182521583842170104695, 6.06912843886249595157109268313, 6.71840576511552826100738118483, 7.64688395988022864876898871930, 8.422787289343644551864277725347