L(s) = 1 | − 0.118i·5-s + (0.866 − 0.5i)7-s + (3.78 + 2.18i)11-s + (3.33 − 1.38i)13-s + (−3.22 − 5.58i)17-s + (−3.42 + 1.97i)19-s + (−1.34 + 2.32i)23-s + 4.98·25-s + (3.54 − 6.14i)29-s − 8.53i·31-s + (−0.0590 − 0.102i)35-s + (−2.29 − 1.32i)37-s + (1.07 + 0.621i)41-s + (5.45 + 9.45i)43-s − 1.40i·47-s + ⋯ |
L(s) = 1 | − 0.0528i·5-s + (0.327 − 0.188i)7-s + (1.14 + 0.659i)11-s + (0.923 − 0.382i)13-s + (−0.782 − 1.35i)17-s + (−0.785 + 0.453i)19-s + (−0.280 + 0.485i)23-s + 0.997·25-s + (0.658 − 1.14i)29-s − 1.53i·31-s + (−0.00998 − 0.0172i)35-s + (−0.377 − 0.217i)37-s + (0.168 + 0.0970i)41-s + (0.832 + 1.44i)43-s − 0.204i·47-s + ⋯ |
Λ(s)=(=(3276s/2ΓC(s)L(s)(0.801+0.598i)Λ(2−s)
Λ(s)=(=(3276s/2ΓC(s+1/2)L(s)(0.801+0.598i)Λ(1−s)
Degree: |
2 |
Conductor: |
3276
= 22⋅32⋅7⋅13
|
Sign: |
0.801+0.598i
|
Analytic conductor: |
26.1589 |
Root analytic conductor: |
5.11458 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3276(2773,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3276, ( :1/2), 0.801+0.598i)
|
Particular Values
L(1) |
≈ |
2.086682107 |
L(21) |
≈ |
2.086682107 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(−0.866+0.5i)T |
| 13 | 1+(−3.33+1.38i)T |
good | 5 | 1+0.118iT−5T2 |
| 11 | 1+(−3.78−2.18i)T+(5.5+9.52i)T2 |
| 17 | 1+(3.22+5.58i)T+(−8.5+14.7i)T2 |
| 19 | 1+(3.42−1.97i)T+(9.5−16.4i)T2 |
| 23 | 1+(1.34−2.32i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−3.54+6.14i)T+(−14.5−25.1i)T2 |
| 31 | 1+8.53iT−31T2 |
| 37 | 1+(2.29+1.32i)T+(18.5+32.0i)T2 |
| 41 | 1+(−1.07−0.621i)T+(20.5+35.5i)T2 |
| 43 | 1+(−5.45−9.45i)T+(−21.5+37.2i)T2 |
| 47 | 1+1.40iT−47T2 |
| 53 | 1+5.89T+53T2 |
| 59 | 1+(−6.96+4.02i)T+(29.5−51.0i)T2 |
| 61 | 1+(−3.00−5.20i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−10.6−6.12i)T+(33.5+58.0i)T2 |
| 71 | 1+(10.4−6.05i)T+(35.5−61.4i)T2 |
| 73 | 1+4.58iT−73T2 |
| 79 | 1+8.42T+79T2 |
| 83 | 1+8.94iT−83T2 |
| 89 | 1+(1.28+0.741i)T+(44.5+77.0i)T2 |
| 97 | 1+(0.00126−0.000728i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.571813807419987176278513784931, −7.86294981939487085307116986987, −7.01755845663116900435789872265, −6.38059545441856087379212682684, −5.61206741748597655696230063536, −4.42230807827983426709844116211, −4.15988554015732749868985836857, −2.90808199611483756642358284528, −1.88189190615340209571424287909, −0.76056358226341084154694272677,
1.10175901830411171702111043059, 2.01169256507244949046572542182, 3.27540386304074469377522445154, 4.02019613427899060218104481548, 4.78632928878055958000013145574, 5.83902011362928566366055181946, 6.59557231220891705982122657900, 6.90418901283911191465623821025, 8.401196312300489699508088601118, 8.631778935667068185517628319400