L(s) = 1 | − 0.118i·5-s + (0.866 − 0.5i)7-s + (3.78 + 2.18i)11-s + (3.33 − 1.38i)13-s + (−3.22 − 5.58i)17-s + (−3.42 + 1.97i)19-s + (−1.34 + 2.32i)23-s + 4.98·25-s + (3.54 − 6.14i)29-s − 8.53i·31-s + (−0.0590 − 0.102i)35-s + (−2.29 − 1.32i)37-s + (1.07 + 0.621i)41-s + (5.45 + 9.45i)43-s − 1.40i·47-s + ⋯ |
L(s) = 1 | − 0.0528i·5-s + (0.327 − 0.188i)7-s + (1.14 + 0.659i)11-s + (0.923 − 0.382i)13-s + (−0.782 − 1.35i)17-s + (−0.785 + 0.453i)19-s + (−0.280 + 0.485i)23-s + 0.997·25-s + (0.658 − 1.14i)29-s − 1.53i·31-s + (−0.00998 − 0.0172i)35-s + (−0.377 − 0.217i)37-s + (0.168 + 0.0970i)41-s + (0.832 + 1.44i)43-s − 0.204i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.801 + 0.598i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3276 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.801 + 0.598i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.086682107\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.086682107\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.866 + 0.5i)T \) |
| 13 | \( 1 + (-3.33 + 1.38i)T \) |
good | 5 | \( 1 + 0.118iT - 5T^{2} \) |
| 11 | \( 1 + (-3.78 - 2.18i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (3.22 + 5.58i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3.42 - 1.97i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.34 - 2.32i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.54 + 6.14i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 8.53iT - 31T^{2} \) |
| 37 | \( 1 + (2.29 + 1.32i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.07 - 0.621i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.45 - 9.45i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 1.40iT - 47T^{2} \) |
| 53 | \( 1 + 5.89T + 53T^{2} \) |
| 59 | \( 1 + (-6.96 + 4.02i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.00 - 5.20i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-10.6 - 6.12i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (10.4 - 6.05i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 4.58iT - 73T^{2} \) |
| 79 | \( 1 + 8.42T + 79T^{2} \) |
| 83 | \( 1 + 8.94iT - 83T^{2} \) |
| 89 | \( 1 + (1.28 + 0.741i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (0.00126 - 0.000728i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.571813807419987176278513784931, −7.86294981939487085307116986987, −7.01755845663116900435789872265, −6.38059545441856087379212682684, −5.61206741748597655696230063536, −4.42230807827983426709844116211, −4.15988554015732749868985836857, −2.90808199611483756642358284528, −1.88189190615340209571424287909, −0.76056358226341084154694272677,
1.10175901830411171702111043059, 2.01169256507244949046572542182, 3.27540386304074469377522445154, 4.02019613427899060218104481548, 4.78632928878055958000013145574, 5.83902011362928566366055181946, 6.59557231220891705982122657900, 6.90418901283911191465623821025, 8.401196312300489699508088601118, 8.631778935667068185517628319400