L(s) = 1 | + 3-s + (−0.707 + 0.707i)5-s + (−0.707 − 0.707i)7-s + (−1 − i)11-s + (−0.707 + 0.707i)13-s + (−0.707 + 0.707i)15-s + i·17-s + (−0.707 − 0.707i)21-s + 1.41i·23-s − 27-s − 1.41·29-s + (−1 − i)33-s + 1.00·35-s + (0.707 + 0.707i)37-s + (−0.707 + 0.707i)39-s + ⋯ |
L(s) = 1 | + 3-s + (−0.707 + 0.707i)5-s + (−0.707 − 0.707i)7-s + (−1 − i)11-s + (−0.707 + 0.707i)13-s + (−0.707 + 0.707i)15-s + i·17-s + (−0.707 − 0.707i)21-s + 1.41i·23-s − 27-s − 1.41·29-s + (−1 − i)33-s + 1.00·35-s + (0.707 + 0.707i)37-s + (−0.707 + 0.707i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.881 - 0.471i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.881 - 0.471i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4057717202\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4057717202\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (0.707 - 0.707i)T \) |
good | 3 | \( 1 - T + T^{2} \) |
| 5 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 7 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 11 | \( 1 + (1 + i)T + iT^{2} \) |
| 17 | \( 1 - iT - T^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 23 | \( 1 - 1.41iT - T^{2} \) |
| 29 | \( 1 + 1.41T + T^{2} \) |
| 31 | \( 1 - iT^{2} \) |
| 37 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 41 | \( 1 - iT^{2} \) |
| 43 | \( 1 - iT - T^{2} \) |
| 47 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 53 | \( 1 + 1.41T + T^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + (1 - i)T - iT^{2} \) |
| 71 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 - 1.41T + T^{2} \) |
| 83 | \( 1 + (-1 + i)T - iT^{2} \) |
| 89 | \( 1 + iT^{2} \) |
| 97 | \( 1 + (1 - i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.183102011137444634977294392921, −8.077692401077722799556148721052, −7.83062905611901218089442144434, −7.10588432961513753404328750591, −6.25874252835575784352321788199, −5.37877938037877617628355175986, −4.13982285254917035511581341742, −3.36062727917648475904459819597, −3.08818343251953014960460426997, −1.87572452092590075395201543127,
0.18988098491569389653830170019, 2.28483093510862661854618010448, 2.69126668323538374050197051887, 3.64420775745917578899784562946, 4.70055820479314528143632738219, 5.23582222920935900080502249867, 6.25255651128486167551986674601, 7.41052505523729724094255638181, 7.78686871874897934100994343943, 8.446803772448472072337516189676