L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s − 0.999·8-s + (0.5 + 0.866i)9-s + 2·13-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + (−0.499 + 0.866i)18-s + (−0.5 + 0.866i)25-s + (1 + 1.73i)26-s + (0.499 − 0.866i)32-s + 0.999·34-s − 0.999·36-s − 0.999·50-s + (−0.999 + 1.73i)52-s + (−1 + 1.73i)53-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s − 0.999·8-s + (0.5 + 0.866i)9-s + 2·13-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + (−0.499 + 0.866i)18-s + (−0.5 + 0.866i)25-s + (1 + 1.73i)26-s + (0.499 − 0.866i)32-s + 0.999·34-s − 0.999·36-s − 0.999·50-s + (−0.999 + 1.73i)52-s + (−1 + 1.73i)53-s + ⋯ |
Λ(s)=(=(3332s/2ΓC(s)L(s)(−0.266−0.963i)Λ(1−s)
Λ(s)=(=(3332s/2ΓC(s)L(s)(−0.266−0.963i)Λ(1−s)
Degree: |
2 |
Conductor: |
3332
= 22⋅72⋅17
|
Sign: |
−0.266−0.963i
|
Analytic conductor: |
1.66288 |
Root analytic conductor: |
1.28952 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3332(67,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3332, ( :0), −0.266−0.963i)
|
Particular Values
L(21) |
≈ |
1.698712486 |
L(21) |
≈ |
1.698712486 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5−0.866i)T |
| 7 | 1 |
| 17 | 1+(−0.5+0.866i)T |
good | 3 | 1+(−0.5−0.866i)T2 |
| 5 | 1+(0.5−0.866i)T2 |
| 11 | 1+(−0.5−0.866i)T2 |
| 13 | 1−2T+T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1+(−0.5+0.866i)T2 |
| 29 | 1−T2 |
| 31 | 1+(−0.5−0.866i)T2 |
| 37 | 1+(0.5−0.866i)T2 |
| 41 | 1−T2 |
| 43 | 1−T2 |
| 47 | 1+(0.5−0.866i)T2 |
| 53 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(0.5−0.866i)T2 |
| 67 | 1+(0.5+0.866i)T2 |
| 71 | 1+T2 |
| 73 | 1+(0.5+0.866i)T2 |
| 79 | 1+(−0.5+0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.870431060253199522193022083744, −8.052473101106199130887091473846, −7.56244060526558704183467388904, −6.76629422866384744025966600858, −5.95236142671556961796155853963, −5.36332984954896989788059762674, −4.47887448849527279390066982580, −3.72845319858894840005191816088, −2.87969008200034055028423249611, −1.43444400753966688670149187750,
1.02368798150210056960391418729, 1.87312827483466508110981069627, 3.24897868620786090643291514224, 3.77334980129548481202183683420, 4.43172519368160728415277307891, 5.62264660835330541231651592472, 6.17516738020270335602904850429, 6.78421467486257145275805207514, 8.176187904380130979774471702948, 8.612420346822928727030383580695