L(s) = 1 | + 3·3-s − 18·5-s − 7·7-s + 9·9-s + 36·11-s − 34·13-s − 54·15-s + 42·17-s + 124·19-s − 21·21-s + 199·25-s + 27·27-s + 102·29-s + 160·31-s + 108·33-s + 126·35-s + 398·37-s − 102·39-s − 318·41-s + 268·43-s − 162·45-s − 240·47-s + 49·49-s + 126·51-s − 498·53-s − 648·55-s + 372·57-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 1.60·5-s − 0.377·7-s + 1/3·9-s + 0.986·11-s − 0.725·13-s − 0.929·15-s + 0.599·17-s + 1.49·19-s − 0.218·21-s + 1.59·25-s + 0.192·27-s + 0.653·29-s + 0.926·31-s + 0.569·33-s + 0.608·35-s + 1.76·37-s − 0.418·39-s − 1.21·41-s + 0.950·43-s − 0.536·45-s − 0.744·47-s + 1/7·49-s + 0.345·51-s − 1.29·53-s − 1.58·55-s + 0.864·57-s + ⋯ |
Λ(s)=(=(336s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(336s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.676142833 |
L(21) |
≈ |
1.676142833 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−pT |
| 7 | 1+pT |
good | 5 | 1+18T+p3T2 |
| 11 | 1−36T+p3T2 |
| 13 | 1+34T+p3T2 |
| 17 | 1−42T+p3T2 |
| 19 | 1−124T+p3T2 |
| 23 | 1+p3T2 |
| 29 | 1−102T+p3T2 |
| 31 | 1−160T+p3T2 |
| 37 | 1−398T+p3T2 |
| 41 | 1+318T+p3T2 |
| 43 | 1−268T+p3T2 |
| 47 | 1+240T+p3T2 |
| 53 | 1+498T+p3T2 |
| 59 | 1−132T+p3T2 |
| 61 | 1−398T+p3T2 |
| 67 | 1+92T+p3T2 |
| 71 | 1−720T+p3T2 |
| 73 | 1+502T+p3T2 |
| 79 | 1−1024T+p3T2 |
| 83 | 1−204T+p3T2 |
| 89 | 1−354T+p3T2 |
| 97 | 1+286T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.43808645846862009442108850231, −10.02564470085939608724930382948, −9.253989239769519311151869418084, −8.108753058559954913654317784987, −7.52899283861443377884794982206, −6.54325801361683782115600262154, −4.84914072840988045227180385771, −3.81155493369603893403057077384, −2.96531272172107702079338172136, −0.877631644606296641782168486277,
0.877631644606296641782168486277, 2.96531272172107702079338172136, 3.81155493369603893403057077384, 4.84914072840988045227180385771, 6.54325801361683782115600262154, 7.52899283861443377884794982206, 8.108753058559954913654317784987, 9.253989239769519311151869418084, 10.02564470085939608724930382948, 11.43808645846862009442108850231