Properties

Label 2-33e2-33.32-c1-0-15
Degree $2$
Conductor $1089$
Sign $0.742 + 0.670i$
Analytic cond. $8.69570$
Root an. cond. $2.94884$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.35·2-s + 3.52·4-s − 2.24i·5-s + 4.05i·7-s − 3.58·8-s + 5.28i·10-s − 4.65i·13-s − 9.52i·14-s + 1.38·16-s + 0.0762·17-s + 2.39i·19-s − 7.92i·20-s − 3.22i·23-s − 0.0541·25-s + 10.9i·26-s + ⋯
L(s)  = 1  − 1.66·2-s + 1.76·4-s − 1.00i·5-s + 1.53i·7-s − 1.26·8-s + 1.67i·10-s − 1.29i·13-s − 2.54i·14-s + 0.345·16-s + 0.0185·17-s + 0.549i·19-s − 1.77i·20-s − 0.672i·23-s − 0.0108·25-s + 2.14i·26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.742 + 0.670i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.742 + 0.670i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1089\)    =    \(3^{2} \cdot 11^{2}\)
Sign: $0.742 + 0.670i$
Analytic conductor: \(8.69570\)
Root analytic conductor: \(2.94884\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1089} (1088, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1089,\ (\ :1/2),\ 0.742 + 0.670i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6549100374\)
\(L(\frac12)\) \(\approx\) \(0.6549100374\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 \)
good2 \( 1 + 2.35T + 2T^{2} \)
5 \( 1 + 2.24iT - 5T^{2} \)
7 \( 1 - 4.05iT - 7T^{2} \)
13 \( 1 + 4.65iT - 13T^{2} \)
17 \( 1 - 0.0762T + 17T^{2} \)
19 \( 1 - 2.39iT - 19T^{2} \)
23 \( 1 + 3.22iT - 23T^{2} \)
29 \( 1 - 1.83T + 29T^{2} \)
31 \( 1 - 1.67T + 31T^{2} \)
37 \( 1 - 7.26T + 37T^{2} \)
41 \( 1 + 8.44T + 41T^{2} \)
43 \( 1 + 4.28iT - 43T^{2} \)
47 \( 1 - 6.21iT - 47T^{2} \)
53 \( 1 - 1.22iT - 53T^{2} \)
59 \( 1 + 0.580iT - 59T^{2} \)
61 \( 1 + 3.78iT - 61T^{2} \)
67 \( 1 - 12.9T + 67T^{2} \)
71 \( 1 + 1.12iT - 71T^{2} \)
73 \( 1 + 13.3iT - 73T^{2} \)
79 \( 1 + 0.659iT - 79T^{2} \)
83 \( 1 - 10.2T + 83T^{2} \)
89 \( 1 - 6.58iT - 89T^{2} \)
97 \( 1 - 16.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.552349670080952358068660478156, −8.888273043708382110795207780242, −8.296623360199941562867205296402, −7.85977757765401231228274141180, −6.52505248910018707448622996699, −5.67387098294094112822577897240, −4.79316296155433700274429002888, −2.98896708997841357777642368798, −1.95022436284174280585114856610, −0.66252041845139694383057129592, 0.968933882180737361786210759237, 2.22910118221352193450796195025, 3.51391495750073009017519728822, 4.62018570165626904119412241485, 6.42955551275307902723920047863, 6.93317418990346560846888670190, 7.44116879643350110344043658004, 8.322867299329349013755625697181, 9.280705063108255934688041643865, 10.01479153894407357939933273644

Graph of the $Z$-function along the critical line