L(s) = 1 | − 2.35·2-s + 3.52·4-s − 2.24i·5-s + 4.05i·7-s − 3.58·8-s + 5.28i·10-s − 4.65i·13-s − 9.52i·14-s + 1.38·16-s + 0.0762·17-s + 2.39i·19-s − 7.92i·20-s − 3.22i·23-s − 0.0541·25-s + 10.9i·26-s + ⋯ |
L(s) = 1 | − 1.66·2-s + 1.76·4-s − 1.00i·5-s + 1.53i·7-s − 1.26·8-s + 1.67i·10-s − 1.29i·13-s − 2.54i·14-s + 0.345·16-s + 0.0185·17-s + 0.549i·19-s − 1.77i·20-s − 0.672i·23-s − 0.0108·25-s + 2.14i·26-s + ⋯ |
Λ(s)=(=(1089s/2ΓC(s)L(s)(0.742+0.670i)Λ(2−s)
Λ(s)=(=(1089s/2ΓC(s+1/2)L(s)(0.742+0.670i)Λ(1−s)
Degree: |
2 |
Conductor: |
1089
= 32⋅112
|
Sign: |
0.742+0.670i
|
Analytic conductor: |
8.69570 |
Root analytic conductor: |
2.94884 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1089(1088,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1089, ( :1/2), 0.742+0.670i)
|
Particular Values
L(1) |
≈ |
0.6549100374 |
L(21) |
≈ |
0.6549100374 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1 |
good | 2 | 1+2.35T+2T2 |
| 5 | 1+2.24iT−5T2 |
| 7 | 1−4.05iT−7T2 |
| 13 | 1+4.65iT−13T2 |
| 17 | 1−0.0762T+17T2 |
| 19 | 1−2.39iT−19T2 |
| 23 | 1+3.22iT−23T2 |
| 29 | 1−1.83T+29T2 |
| 31 | 1−1.67T+31T2 |
| 37 | 1−7.26T+37T2 |
| 41 | 1+8.44T+41T2 |
| 43 | 1+4.28iT−43T2 |
| 47 | 1−6.21iT−47T2 |
| 53 | 1−1.22iT−53T2 |
| 59 | 1+0.580iT−59T2 |
| 61 | 1+3.78iT−61T2 |
| 67 | 1−12.9T+67T2 |
| 71 | 1+1.12iT−71T2 |
| 73 | 1+13.3iT−73T2 |
| 79 | 1+0.659iT−79T2 |
| 83 | 1−10.2T+83T2 |
| 89 | 1−6.58iT−89T2 |
| 97 | 1−16.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.552349670080952358068660478156, −8.888273043708382110795207780242, −8.296623360199941562867205296402, −7.85977757765401231228274141180, −6.52505248910018707448622996699, −5.67387098294094112822577897240, −4.79316296155433700274429002888, −2.98896708997841357777642368798, −1.95022436284174280585114856610, −0.66252041845139694383057129592,
0.968933882180737361786210759237, 2.22910118221352193450796195025, 3.51391495750073009017519728822, 4.62018570165626904119412241485, 6.42955551275307902723920047863, 6.93317418990346560846888670190, 7.44116879643350110344043658004, 8.322867299329349013755625697181, 9.280705063108255934688041643865, 10.01479153894407357939933273644