L(s) = 1 | − 2.35·2-s + 3.52·4-s − 2.24i·5-s + 4.05i·7-s − 3.58·8-s + 5.28i·10-s − 4.65i·13-s − 9.52i·14-s + 1.38·16-s + 0.0762·17-s + 2.39i·19-s − 7.92i·20-s − 3.22i·23-s − 0.0541·25-s + 10.9i·26-s + ⋯ |
L(s) = 1 | − 1.66·2-s + 1.76·4-s − 1.00i·5-s + 1.53i·7-s − 1.26·8-s + 1.67i·10-s − 1.29i·13-s − 2.54i·14-s + 0.345·16-s + 0.0185·17-s + 0.549i·19-s − 1.77i·20-s − 0.672i·23-s − 0.0108·25-s + 2.14i·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.742 + 0.670i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.742 + 0.670i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6549100374\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6549100374\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + 2.35T + 2T^{2} \) |
| 5 | \( 1 + 2.24iT - 5T^{2} \) |
| 7 | \( 1 - 4.05iT - 7T^{2} \) |
| 13 | \( 1 + 4.65iT - 13T^{2} \) |
| 17 | \( 1 - 0.0762T + 17T^{2} \) |
| 19 | \( 1 - 2.39iT - 19T^{2} \) |
| 23 | \( 1 + 3.22iT - 23T^{2} \) |
| 29 | \( 1 - 1.83T + 29T^{2} \) |
| 31 | \( 1 - 1.67T + 31T^{2} \) |
| 37 | \( 1 - 7.26T + 37T^{2} \) |
| 41 | \( 1 + 8.44T + 41T^{2} \) |
| 43 | \( 1 + 4.28iT - 43T^{2} \) |
| 47 | \( 1 - 6.21iT - 47T^{2} \) |
| 53 | \( 1 - 1.22iT - 53T^{2} \) |
| 59 | \( 1 + 0.580iT - 59T^{2} \) |
| 61 | \( 1 + 3.78iT - 61T^{2} \) |
| 67 | \( 1 - 12.9T + 67T^{2} \) |
| 71 | \( 1 + 1.12iT - 71T^{2} \) |
| 73 | \( 1 + 13.3iT - 73T^{2} \) |
| 79 | \( 1 + 0.659iT - 79T^{2} \) |
| 83 | \( 1 - 10.2T + 83T^{2} \) |
| 89 | \( 1 - 6.58iT - 89T^{2} \) |
| 97 | \( 1 - 16.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.552349670080952358068660478156, −8.888273043708382110795207780242, −8.296623360199941562867205296402, −7.85977757765401231228274141180, −6.52505248910018707448622996699, −5.67387098294094112822577897240, −4.79316296155433700274429002888, −2.98896708997841357777642368798, −1.95022436284174280585114856610, −0.66252041845139694383057129592,
0.968933882180737361786210759237, 2.22910118221352193450796195025, 3.51391495750073009017519728822, 4.62018570165626904119412241485, 6.42955551275307902723920047863, 6.93317418990346560846888670190, 7.44116879643350110344043658004, 8.322867299329349013755625697181, 9.280705063108255934688041643865, 10.01479153894407357939933273644