L(s) = 1 | + (−0.669 + 0.743i)3-s + (−0.978 + 0.207i)4-s + (−1.72 − 0.181i)5-s + (−0.104 − 0.994i)9-s + (0.5 − 0.866i)12-s + (1.28 − 1.15i)15-s + (0.913 − 0.406i)16-s + (1.72 − 0.181i)20-s + (1.95 + 0.415i)25-s + (0.809 + 0.587i)27-s + (0.913 + 0.406i)31-s + (0.309 + 0.951i)36-s + (0.309 − 0.951i)37-s + 1.73i·45-s + (0.360 − 1.69i)47-s + (−0.309 + 0.951i)48-s + ⋯ |
L(s) = 1 | + (−0.669 + 0.743i)3-s + (−0.978 + 0.207i)4-s + (−1.72 − 0.181i)5-s + (−0.104 − 0.994i)9-s + (0.5 − 0.866i)12-s + (1.28 − 1.15i)15-s + (0.913 − 0.406i)16-s + (1.72 − 0.181i)20-s + (1.95 + 0.415i)25-s + (0.809 + 0.587i)27-s + (0.913 + 0.406i)31-s + (0.309 + 0.951i)36-s + (0.309 − 0.951i)37-s + 1.73i·45-s + (0.360 − 1.69i)47-s + (−0.309 + 0.951i)48-s + ⋯ |
Λ(s)=(=(1089s/2ΓC(s)L(s)(0.913+0.406i)Λ(1−s)
Λ(s)=(=(1089s/2ΓC(s)L(s)(0.913+0.406i)Λ(1−s)
Degree: |
2 |
Conductor: |
1089
= 32⋅112
|
Sign: |
0.913+0.406i
|
Analytic conductor: |
0.543481 |
Root analytic conductor: |
0.737212 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1089(245,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1089, ( :0), 0.913+0.406i)
|
Particular Values
L(21) |
≈ |
0.3635656276 |
L(21) |
≈ |
0.3635656276 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.669−0.743i)T |
| 11 | 1 |
good | 2 | 1+(0.978−0.207i)T2 |
| 5 | 1+(1.72+0.181i)T+(0.978+0.207i)T2 |
| 7 | 1+(−0.104+0.994i)T2 |
| 13 | 1+(0.669+0.743i)T2 |
| 17 | 1+(−0.309−0.951i)T2 |
| 19 | 1+(−0.809+0.587i)T2 |
| 23 | 1+(0.5−0.866i)T2 |
| 29 | 1+(0.104−0.994i)T2 |
| 31 | 1+(−0.913−0.406i)T+(0.669+0.743i)T2 |
| 37 | 1+(−0.309+0.951i)T+(−0.809−0.587i)T2 |
| 41 | 1+(0.104+0.994i)T2 |
| 43 | 1+(−0.5−0.866i)T2 |
| 47 | 1+(−0.360+1.69i)T+(−0.913−0.406i)T2 |
| 53 | 1+(1.01+1.40i)T+(−0.309+0.951i)T2 |
| 59 | 1+(−0.360−1.69i)T+(−0.913+0.406i)T2 |
| 61 | 1+(0.669−0.743i)T2 |
| 67 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 71 | 1+(−1.01+1.40i)T+(−0.309−0.951i)T2 |
| 73 | 1+(−0.809−0.587i)T2 |
| 79 | 1+(−0.978+0.207i)T2 |
| 83 | 1+(−0.669+0.743i)T2 |
| 89 | 1−T2 |
| 97 | 1+(−0.104−0.994i)T+(−0.978+0.207i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.06020877222711465274330322461, −9.094337691612032780875889808841, −8.465960088777360389020179576863, −7.69963777593424874400648462560, −6.70676376674748128068529941457, −5.39683063960763899127126602799, −4.66703828281066826279713335114, −3.95840125991140156828474424085, −3.31919641074968655133768504355, −0.51327809106746081110577102323,
0.990170039254317290133442846089, 2.99356484526563916301213786187, 4.22374297474166463179812140824, 4.76203928270803249437902214337, 5.91608957379477845132158476649, 6.84993963502090522039560678051, 7.900531962492548836387086529612, 8.077287584725451346216435465038, 9.186002337863880186572645181543, 10.28095163521730226145548995752