L(s) = 1 | + (−0.669 + 0.743i)3-s + (−0.978 + 0.207i)4-s + (−1.72 − 0.181i)5-s + (−0.104 − 0.994i)9-s + (0.5 − 0.866i)12-s + (1.28 − 1.15i)15-s + (0.913 − 0.406i)16-s + (1.72 − 0.181i)20-s + (1.95 + 0.415i)25-s + (0.809 + 0.587i)27-s + (0.913 + 0.406i)31-s + (0.309 + 0.951i)36-s + (0.309 − 0.951i)37-s + 1.73i·45-s + (0.360 − 1.69i)47-s + (−0.309 + 0.951i)48-s + ⋯ |
L(s) = 1 | + (−0.669 + 0.743i)3-s + (−0.978 + 0.207i)4-s + (−1.72 − 0.181i)5-s + (−0.104 − 0.994i)9-s + (0.5 − 0.866i)12-s + (1.28 − 1.15i)15-s + (0.913 − 0.406i)16-s + (1.72 − 0.181i)20-s + (1.95 + 0.415i)25-s + (0.809 + 0.587i)27-s + (0.913 + 0.406i)31-s + (0.309 + 0.951i)36-s + (0.309 − 0.951i)37-s + 1.73i·45-s + (0.360 − 1.69i)47-s + (−0.309 + 0.951i)48-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.913 + 0.406i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.913 + 0.406i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3635656276\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3635656276\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.669 - 0.743i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.978 - 0.207i)T^{2} \) |
| 5 | \( 1 + (1.72 + 0.181i)T + (0.978 + 0.207i)T^{2} \) |
| 7 | \( 1 + (-0.104 + 0.994i)T^{2} \) |
| 13 | \( 1 + (0.669 + 0.743i)T^{2} \) |
| 17 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 19 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.104 - 0.994i)T^{2} \) |
| 31 | \( 1 + (-0.913 - 0.406i)T + (0.669 + 0.743i)T^{2} \) |
| 37 | \( 1 + (-0.309 + 0.951i)T + (-0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (0.104 + 0.994i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.360 + 1.69i)T + (-0.913 - 0.406i)T^{2} \) |
| 53 | \( 1 + (1.01 + 1.40i)T + (-0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (-0.360 - 1.69i)T + (-0.913 + 0.406i)T^{2} \) |
| 61 | \( 1 + (0.669 - 0.743i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-1.01 + 1.40i)T + (-0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.978 + 0.207i)T^{2} \) |
| 83 | \( 1 + (-0.669 + 0.743i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-0.104 - 0.994i)T + (-0.978 + 0.207i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.06020877222711465274330322461, −9.094337691612032780875889808841, −8.465960088777360389020179576863, −7.69963777593424874400648462560, −6.70676376674748128068529941457, −5.39683063960763899127126602799, −4.66703828281066826279713335114, −3.95840125991140156828474424085, −3.31919641074968655133768504355, −0.51327809106746081110577102323,
0.990170039254317290133442846089, 2.99356484526563916301213786187, 4.22374297474166463179812140824, 4.76203928270803249437902214337, 5.91608957379477845132158476649, 6.84993963502090522039560678051, 7.900531962492548836387086529612, 8.077287584725451346216435465038, 9.186002337863880186572645181543, 10.28095163521730226145548995752