L(s) = 1 | + (−0.602 − 0.798i)2-s + (−0.273 + 0.961i)4-s + (1.73 + 0.673i)5-s + (0.932 − 0.361i)8-s + (0.0922 − 0.995i)9-s + (−0.510 − 1.79i)10-s + (0.172 − 0.0666i)13-s + (−0.850 − 0.526i)16-s + (−0.850 − 0.526i)17-s + (−0.850 + 0.526i)18-s + (−1.12 + 1.48i)20-s + (1.83 + 1.66i)25-s + (−0.156 − 0.0971i)26-s + (−0.0505 + 0.177i)29-s + (0.0922 + 0.995i)32-s + ⋯ |
L(s) = 1 | + (−0.602 − 0.798i)2-s + (−0.273 + 0.961i)4-s + (1.73 + 0.673i)5-s + (0.932 − 0.361i)8-s + (0.0922 − 0.995i)9-s + (−0.510 − 1.79i)10-s + (0.172 − 0.0666i)13-s + (−0.850 − 0.526i)16-s + (−0.850 − 0.526i)17-s + (−0.850 + 0.526i)18-s + (−1.12 + 1.48i)20-s + (1.83 + 1.66i)25-s + (−0.156 − 0.0971i)26-s + (−0.0505 + 0.177i)29-s + (0.0922 + 0.995i)32-s + ⋯ |
Λ(s)=(=(1156s/2ΓC(s)L(s)(0.781+0.624i)Λ(1−s)
Λ(s)=(=(1156s/2ΓC(s)L(s)(0.781+0.624i)Λ(1−s)
Degree: |
2 |
Conductor: |
1156
= 22⋅172
|
Sign: |
0.781+0.624i
|
Analytic conductor: |
0.576919 |
Root analytic conductor: |
0.759551 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1156(1055,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1156, ( :0), 0.781+0.624i)
|
Particular Values
L(21) |
≈ |
1.018497989 |
L(21) |
≈ |
1.018497989 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.602+0.798i)T |
| 17 | 1+(0.850+0.526i)T |
good | 3 | 1+(−0.0922+0.995i)T2 |
| 5 | 1+(−1.73−0.673i)T+(0.739+0.673i)T2 |
| 7 | 1+(0.982+0.183i)T2 |
| 11 | 1+(0.850+0.526i)T2 |
| 13 | 1+(−0.172+0.0666i)T+(0.739−0.673i)T2 |
| 19 | 1+(0.273+0.961i)T2 |
| 23 | 1+(0.982+0.183i)T2 |
| 29 | 1+(0.0505−0.177i)T+(−0.850−0.526i)T2 |
| 31 | 1+(−0.739+0.673i)T2 |
| 37 | 1+(0.537−1.07i)T+(−0.602−0.798i)T2 |
| 41 | 1+(−1.37+1.25i)T+(0.0922−0.995i)T2 |
| 43 | 1+(−0.445+0.895i)T2 |
| 47 | 1+(0.982−0.183i)T2 |
| 53 | 1+(0.181−1.95i)T+(−0.982−0.183i)T2 |
| 59 | 1+(−0.932+0.361i)T2 |
| 61 | 1+(1.45+0.271i)T+(0.932+0.361i)T2 |
| 67 | 1+(0.273+0.961i)T2 |
| 71 | 1+(0.982+0.183i)T2 |
| 73 | 1+(0.156+0.0971i)T+(0.445+0.895i)T2 |
| 79 | 1+(0.273+0.961i)T2 |
| 83 | 1+(−0.0922−0.995i)T2 |
| 89 | 1+(1.12+0.435i)T+(0.739+0.673i)T2 |
| 97 | 1+(0.0505−0.544i)T+(−0.982−0.183i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.846670454903261460976732275541, −9.275900294528494042917823540201, −8.752843074737745793661648803818, −7.36481273078247359207499605001, −6.61990805456316269122831702228, −5.85374769674114706976198542568, −4.60151714944977691422138597323, −3.29572481973458585869499104953, −2.49394383026765364546524919274, −1.42604584576712154741517710172,
1.52468738026870222163861167618, 2.31092646403877688716785443720, 4.48113470570963578340560204751, 5.19256625874237079512106997428, 5.97019417696875834406048012756, 6.59411310334288322142660291901, 7.72243896871272404695297503049, 8.565987097460109121066604046242, 9.194587685730624229071420237947, 9.892799718589182378220230690010