L(s) = 1 | + (0.5 + 0.363i)3-s + (−0.381 + 1.17i)5-s + (3.61 − 2.62i)7-s + (−0.809 − 2.48i)9-s + (2.19 + 2.48i)11-s + (−1 − 3.07i)13-s + (−0.618 + 0.449i)15-s + (−1.5 + 4.61i)17-s + (6.16 + 4.47i)19-s + 2.76·21-s + 0.763·23-s + (2.80 + 2.04i)25-s + (1.07 − 3.30i)27-s + (−0.381 + 0.277i)29-s + (−2.61 − 8.05i)31-s + ⋯ |
L(s) = 1 | + (0.288 + 0.209i)3-s + (−0.170 + 0.525i)5-s + (1.36 − 0.993i)7-s + (−0.269 − 0.829i)9-s + (0.660 + 0.750i)11-s + (−0.277 − 0.853i)13-s + (−0.159 + 0.115i)15-s + (−0.363 + 1.11i)17-s + (1.41 + 1.02i)19-s + 0.603·21-s + 0.159·23-s + (0.561 + 0.408i)25-s + (0.206 − 0.635i)27-s + (−0.0709 + 0.0515i)29-s + (−0.470 − 1.44i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0475i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 - 0.0475i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.62402 + 0.0386167i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.62402 + 0.0386167i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (-2.19 - 2.48i)T \) |
good | 3 | \( 1 + (-0.5 - 0.363i)T + (0.927 + 2.85i)T^{2} \) |
| 5 | \( 1 + (0.381 - 1.17i)T + (-4.04 - 2.93i)T^{2} \) |
| 7 | \( 1 + (-3.61 + 2.62i)T + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (1 + 3.07i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (1.5 - 4.61i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (-6.16 - 4.47i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 - 0.763T + 23T^{2} \) |
| 29 | \( 1 + (0.381 - 0.277i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (2.61 + 8.05i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (3.85 - 2.80i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (6.73 + 4.89i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + 7.09T + 43T^{2} \) |
| 47 | \( 1 + (-2 - 1.45i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (0.763 + 2.35i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (1.69 - 1.22i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (2 - 6.15i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 + 3.61T + 67T^{2} \) |
| 71 | \( 1 + (3 - 9.23i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (5.73 - 4.16i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (1.85 + 5.70i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (1.42 - 4.39i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 - 8.61T + 89T^{2} \) |
| 97 | \( 1 + (-1.04 - 3.21i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.47359225357201708189031753941, −10.51021775585035140639259775096, −9.818492292597473859756876599592, −8.581105219113441265979541072088, −7.69152596309609701964949988696, −6.92647126708078113529242683058, −5.54532072691975038745357386987, −4.25270029778607220720638691903, −3.39196203021968693489357201525, −1.49725199424776432196193796858,
1.60178399978884122908616973977, 2.93155851685162470575868904004, 4.88162484982752203680961607332, 5.15774658747839462662738935117, 6.82781049533823022852340650518, 7.86334053196373351174900518745, 8.837347913258328004729102673448, 9.113699778212764753411329746428, 10.83895021703629983305774333074, 11.67621072211849143660359371315