L(s) = 1 | − i·2-s + (−0.991 + 0.130i)3-s − 4-s + (0.130 + 0.991i)6-s + i·8-s + (0.965 − 0.258i)9-s + (−0.448 + 0.258i)11-s + (0.991 − 0.130i)12-s + 16-s + (−0.130 + 0.226i)17-s + (−0.258 − 0.965i)18-s + (−1.05 + 0.608i)19-s + (0.258 + 0.448i)22-s + (−0.130 − 0.991i)24-s + (−0.5 − 0.866i)25-s + ⋯ |
L(s) = 1 | − i·2-s + (−0.991 + 0.130i)3-s − 4-s + (0.130 + 0.991i)6-s + i·8-s + (0.965 − 0.258i)9-s + (−0.448 + 0.258i)11-s + (0.991 − 0.130i)12-s + 16-s + (−0.130 + 0.226i)17-s + (−0.258 − 0.965i)18-s + (−1.05 + 0.608i)19-s + (0.258 + 0.448i)22-s + (−0.130 − 0.991i)24-s + (−0.5 − 0.866i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.810 - 0.585i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.810 - 0.585i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1498205149\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1498205149\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 + (0.991 - 0.130i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.448 - 0.258i)T + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.130 - 0.226i)T + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (1.05 - 0.608i)T + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (0.991 + 1.71i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.965 + 1.67i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + 1.58T + T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + 1.73T + T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (-1.37 - 0.793i)T + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + (0.923 - 1.60i)T + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (0.382 + 0.662i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (1.71 + 0.991i)T + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.466325491529315688470675358563, −7.65217675436742055340106192736, −6.70292357865923757871992198924, −5.80688932972307074953184513416, −5.23092642721325930450720518196, −4.27113274782639217526329698178, −3.82974254700217258131185546546, −2.47554550844879415462250614906, −1.60178836186570864769219561240, −0.10446153697713211463722266382,
1.42044875001478911962576463015, 3.00897893166510766866722333171, 4.26353908103236754796489343948, 4.77651982881301829085081705945, 5.58969869115737085196320425462, 6.25770591153626166472649102866, 6.80351075780713892643269349230, 7.65610440197736046509113911970, 8.165251209634277122022697477664, 9.197729127709210505944461577270