Properties

Label 3528.1.cm.a
Level 35283528
Weight 11
Character orbit 3528.cm
Analytic conductor 1.7611.761
Analytic rank 00
Dimension 1616
Projective image D24D_{24}
CM discriminant -8
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3528,1,Mod(227,3528)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3528, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3528.227");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3528=233272 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3528.cm (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.760701364571.76070136457
Analytic rank: 00
Dimension: 1616
Relative dimension: 88 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ48)\Q(\zeta_{48})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16x8+1 x^{16} - x^{8} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D24D_{24}
Projective field: Galois closure of Q[x]/(x24+)\mathbb{Q}[x]/(x^{24} + \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+ζ4812q2+ζ485q3q4+ζ4817q6ζ4812q8+ζ4810q9+(ζ4822ζ4818)q11ζ485q12++(ζ488+ζ484)q99+O(q100) q + \zeta_{48}^{12} q^{2} + \zeta_{48}^{5} q^{3} - q^{4} + \zeta_{48}^{17} q^{6} - \zeta_{48}^{12} q^{8} + \zeta_{48}^{10} q^{9} + ( - \zeta_{48}^{22} - \zeta_{48}^{18}) q^{11} - \zeta_{48}^{5} q^{12} + \cdots + (\zeta_{48}^{8} + \zeta_{48}^{4}) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q16q4+16q168q2516q64+8q99+O(q100) 16 q - 16 q^{4} + 16 q^{16} - 8 q^{25} - 16 q^{64} + 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3528Z)×\left(\mathbb{Z}/3528\mathbb{Z}\right)^\times.

nn 785785 10811081 17651765 26472647
χ(n)\chi(n) ζ488\zeta_{48}^{8} ζ488\zeta_{48}^{8} 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
227.1
0.793353 0.608761i
0.608761 + 0.793353i
−0.608761 0.793353i
−0.793353 + 0.608761i
−0.991445 0.130526i
−0.130526 + 0.991445i
0.130526 0.991445i
0.991445 + 0.130526i
−0.991445 + 0.130526i
−0.130526 0.991445i
0.130526 + 0.991445i
0.991445 0.130526i
0.793353 + 0.608761i
0.608761 0.793353i
−0.608761 + 0.793353i
−0.793353 0.608761i
1.00000i −0.991445 + 0.130526i −1.00000 0 0.130526 + 0.991445i 0 1.00000i 0.965926 0.258819i 0
227.2 1.00000i −0.130526 0.991445i −1.00000 0 −0.991445 + 0.130526i 0 1.00000i −0.965926 + 0.258819i 0
227.3 1.00000i 0.130526 + 0.991445i −1.00000 0 0.991445 0.130526i 0 1.00000i −0.965926 + 0.258819i 0
227.4 1.00000i 0.991445 0.130526i −1.00000 0 −0.130526 0.991445i 0 1.00000i 0.965926 0.258819i 0
227.5 1.00000i −0.793353 0.608761i −1.00000 0 0.608761 0.793353i 0 1.00000i 0.258819 + 0.965926i 0
227.6 1.00000i −0.608761 + 0.793353i −1.00000 0 −0.793353 0.608761i 0 1.00000i −0.258819 0.965926i 0
227.7 1.00000i 0.608761 0.793353i −1.00000 0 0.793353 + 0.608761i 0 1.00000i −0.258819 0.965926i 0
227.8 1.00000i 0.793353 + 0.608761i −1.00000 0 −0.608761 + 0.793353i 0 1.00000i 0.258819 + 0.965926i 0
3155.1 1.00000i −0.793353 + 0.608761i −1.00000 0 0.608761 + 0.793353i 0 1.00000i 0.258819 0.965926i 0
3155.2 1.00000i −0.608761 0.793353i −1.00000 0 −0.793353 + 0.608761i 0 1.00000i −0.258819 + 0.965926i 0
3155.3 1.00000i 0.608761 + 0.793353i −1.00000 0 0.793353 0.608761i 0 1.00000i −0.258819 + 0.965926i 0
3155.4 1.00000i 0.793353 0.608761i −1.00000 0 −0.608761 0.793353i 0 1.00000i 0.258819 0.965926i 0
3155.5 1.00000i −0.991445 0.130526i −1.00000 0 0.130526 0.991445i 0 1.00000i 0.965926 + 0.258819i 0
3155.6 1.00000i −0.130526 + 0.991445i −1.00000 0 −0.991445 0.130526i 0 1.00000i −0.965926 0.258819i 0
3155.7 1.00000i 0.130526 0.991445i −1.00000 0 0.991445 + 0.130526i 0 1.00000i −0.965926 0.258819i 0
3155.8 1.00000i 0.991445 + 0.130526i −1.00000 0 −0.130526 + 0.991445i 0 1.00000i 0.965926 + 0.258819i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 227.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by Q(2)\Q(\sqrt{-2})
7.b odd 2 1 inner
56.e even 2 1 inner
63.i even 6 1 inner
63.j odd 6 1 inner
504.bt even 6 1 inner
504.cm odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3528.1.cm.a 16
7.b odd 2 1 inner 3528.1.cm.a 16
7.c even 3 1 3528.1.u.a 16
7.c even 3 1 3528.1.co.a 16
7.d odd 6 1 3528.1.u.a 16
7.d odd 6 1 3528.1.co.a 16
8.d odd 2 1 CM 3528.1.cm.a 16
9.d odd 6 1 3528.1.u.a 16
56.e even 2 1 inner 3528.1.cm.a 16
56.k odd 6 1 3528.1.u.a 16
56.k odd 6 1 3528.1.co.a 16
56.m even 6 1 3528.1.u.a 16
56.m even 6 1 3528.1.co.a 16
63.i even 6 1 inner 3528.1.cm.a 16
63.j odd 6 1 inner 3528.1.cm.a 16
63.n odd 6 1 3528.1.co.a 16
63.o even 6 1 3528.1.u.a 16
63.s even 6 1 3528.1.co.a 16
72.l even 6 1 3528.1.u.a 16
504.u odd 6 1 3528.1.co.a 16
504.bt even 6 1 inner 3528.1.cm.a 16
504.cm odd 6 1 inner 3528.1.cm.a 16
504.co odd 6 1 3528.1.u.a 16
504.cy even 6 1 3528.1.co.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3528.1.u.a 16 7.c even 3 1
3528.1.u.a 16 7.d odd 6 1
3528.1.u.a 16 9.d odd 6 1
3528.1.u.a 16 56.k odd 6 1
3528.1.u.a 16 56.m even 6 1
3528.1.u.a 16 63.o even 6 1
3528.1.u.a 16 72.l even 6 1
3528.1.u.a 16 504.co odd 6 1
3528.1.cm.a 16 1.a even 1 1 trivial
3528.1.cm.a 16 7.b odd 2 1 inner
3528.1.cm.a 16 8.d odd 2 1 CM
3528.1.cm.a 16 56.e even 2 1 inner
3528.1.cm.a 16 63.i even 6 1 inner
3528.1.cm.a 16 63.j odd 6 1 inner
3528.1.cm.a 16 504.bt even 6 1 inner
3528.1.cm.a 16 504.cm odd 6 1 inner
3528.1.co.a 16 7.c even 3 1
3528.1.co.a 16 7.d odd 6 1
3528.1.co.a 16 56.k odd 6 1
3528.1.co.a 16 56.m even 6 1
3528.1.co.a 16 63.n odd 6 1
3528.1.co.a 16 63.s even 6 1
3528.1.co.a 16 504.u odd 6 1
3528.1.co.a 16 504.cy even 6 1

Hecke kernels

This newform subspace is the entire newspace S1new(3528,[χ])S_{1}^{\mathrm{new}}(3528, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+1)8 (T^{2} + 1)^{8} Copy content Toggle raw display
33 T16T8+1 T^{16} - T^{8} + 1 Copy content Toggle raw display
55 T16 T^{16} Copy content Toggle raw display
77 T16 T^{16} Copy content Toggle raw display
1111 (T84T6+15T4++1)2 (T^{8} - 4 T^{6} + 15 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
1313 T16 T^{16} Copy content Toggle raw display
1717 T16+8T14++1 T^{16} + 8 T^{14} + \cdots + 1 Copy content Toggle raw display
1919 T168T14++1 T^{16} - 8 T^{14} + \cdots + 1 Copy content Toggle raw display
2323 T16 T^{16} Copy content Toggle raw display
2929 T16 T^{16} Copy content Toggle raw display
3131 T16 T^{16} Copy content Toggle raw display
3737 T16 T^{16} Copy content Toggle raw display
4141 T16+8T14++1 T^{16} + 8 T^{14} + \cdots + 1 Copy content Toggle raw display
4343 (T8+4T6+15T4++1)2 (T^{8} + 4 T^{6} + 15 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
4747 T16 T^{16} Copy content Toggle raw display
5353 T16 T^{16} Copy content Toggle raw display
5959 (T88T6+20T4++1)2 (T^{8} - 8 T^{6} + 20 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
6161 T16 T^{16} Copy content Toggle raw display
6767 (T23)8 (T^{2} - 3)^{8} Copy content Toggle raw display
7171 T16 T^{16} Copy content Toggle raw display
7373 T168T14++1 T^{16} - 8 T^{14} + \cdots + 1 Copy content Toggle raw display
7979 T16 T^{16} Copy content Toggle raw display
8383 (T8+4T6+14T4++4)2 (T^{8} + 4 T^{6} + 14 T^{4} + \cdots + 4)^{2} Copy content Toggle raw display
8989 (T8+4T6+14T4++4)2 (T^{8} + 4 T^{6} + 14 T^{4} + \cdots + 4)^{2} Copy content Toggle raw display
9797 T168T14++1 T^{16} - 8 T^{14} + \cdots + 1 Copy content Toggle raw display
show more
show less