L(s) = 1 | + (−0.5 + 0.866i)3-s + (−0.5 + 0.866i)4-s + 7-s + (−0.499 − 0.866i)9-s + (−0.499 − 0.866i)12-s + (−0.499 − 0.866i)16-s + (0.5 + 0.866i)19-s + (−0.5 + 0.866i)21-s + (−0.5 + 0.866i)25-s + 0.999·27-s + (−0.5 + 0.866i)28-s + (−1 + 1.73i)31-s + 0.999·36-s + (0.5 + 0.866i)37-s − 43-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)3-s + (−0.5 + 0.866i)4-s + 7-s + (−0.499 − 0.866i)9-s + (−0.499 − 0.866i)12-s + (−0.499 − 0.866i)16-s + (0.5 + 0.866i)19-s + (−0.5 + 0.866i)21-s + (−0.5 + 0.866i)25-s + 0.999·27-s + (−0.5 + 0.866i)28-s + (−1 + 1.73i)31-s + 0.999·36-s + (0.5 + 0.866i)37-s − 43-s + ⋯ |
Λ(s)=(=(3549s/2ΓC(s)L(s)(−0.832−0.553i)Λ(1−s)
Λ(s)=(=(3549s/2ΓC(s)L(s)(−0.832−0.553i)Λ(1−s)
Degree: |
2 |
Conductor: |
3549
= 3⋅7⋅132
|
Sign: |
−0.832−0.553i
|
Analytic conductor: |
1.77118 |
Root analytic conductor: |
1.33085 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3549(1691,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3549, ( :0), −0.832−0.553i)
|
Particular Values
L(21) |
≈ |
0.8506911652 |
L(21) |
≈ |
0.8506911652 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.5−0.866i)T |
| 7 | 1−T |
| 13 | 1 |
good | 2 | 1+(0.5−0.866i)T2 |
| 5 | 1+(0.5−0.866i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 17 | 1+(0.5+0.866i)T2 |
| 19 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 23 | 1+(0.5−0.866i)T2 |
| 29 | 1−T2 |
| 31 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 37 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 41 | 1−T2 |
| 43 | 1+T+T2 |
| 47 | 1+(0.5−0.866i)T2 |
| 53 | 1+(0.5+0.866i)T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 67 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 79 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(0.5−0.866i)T2 |
| 97 | 1+T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.922293409778590822462179376171, −8.465393136997674588035781937818, −7.65193959280154279638913303689, −6.95505763591245309022701211096, −5.76529162023349609869879688847, −5.14746419231732647853936141731, −4.48959681668215419117772241296, −3.70398828818316253035734409946, −3.01949551390773177709447818940, −1.48809322494757712281314394824,
0.56458621881697528772267538142, 1.68322333978594262498757629335, 2.43056504684672828421140871339, 4.03528168321679521148877699674, 4.84628486392782537195623458802, 5.47270839511334773130692100095, 6.08764886848978946299411249578, 6.93405538086859487749985995299, 7.72904451933429480594957306273, 8.313973223058416151096288384942