L(s) = 1 | + (0.866 + 0.5i)2-s + (0.866 − 0.5i)3-s + (0.866 + 0.5i)5-s + 0.999·6-s + (−0.5 + 0.866i)7-s − i·8-s + (0.499 − 0.866i)9-s + (0.499 + 0.866i)10-s + (−0.866 + 0.499i)14-s + 0.999·15-s + (0.5 − 0.866i)16-s + (0.866 − 0.5i)17-s + (0.866 − 0.499i)18-s + 0.999i·21-s + (−0.866 − 0.5i)23-s + (−0.500 − 0.866i)24-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (0.866 − 0.5i)3-s + (0.866 + 0.5i)5-s + 0.999·6-s + (−0.5 + 0.866i)7-s − i·8-s + (0.499 − 0.866i)9-s + (0.499 + 0.866i)10-s + (−0.866 + 0.499i)14-s + 0.999·15-s + (0.5 − 0.866i)16-s + (0.866 − 0.5i)17-s + (0.866 − 0.499i)18-s + 0.999i·21-s + (−0.866 − 0.5i)23-s + (−0.500 − 0.866i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3549 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0633i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3549 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0633i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.875039495\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.875039495\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 - iT - T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + iT - T^{2} \) |
| 43 | \( 1 - T + T^{2} \) |
| 47 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - iT - T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.843098293354370364654632904539, −7.86143824559818728660054651268, −7.01079897730449712325292416779, −6.42933274499263184945330649007, −5.87209672797094643549803054868, −5.16822631286312359879695882913, −4.08736645078950007892335390638, −3.13063636244558393235943834579, −2.57439242690243099995285761355, −1.40031750657258055488451401178,
1.58650792027432124703707891705, 2.46360901423523538128158775844, 3.40983729907087796069023361136, 3.98956672634286970689886381270, 4.64067466894784541431617508837, 5.56522204954389770241310280453, 6.17991199966726997296602831919, 7.58347333446950415766391377478, 7.913524147935687966006768327190, 8.865495134880672236171595117142