L(s) = 1 | + (0.866 + 0.5i)2-s + (0.866 − 0.5i)3-s + (0.866 + 0.5i)5-s + 0.999·6-s + (−0.5 + 0.866i)7-s − i·8-s + (0.499 − 0.866i)9-s + (0.499 + 0.866i)10-s + (−0.866 + 0.499i)14-s + 0.999·15-s + (0.5 − 0.866i)16-s + (0.866 − 0.5i)17-s + (0.866 − 0.499i)18-s + 0.999i·21-s + (−0.866 − 0.5i)23-s + (−0.500 − 0.866i)24-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (0.866 − 0.5i)3-s + (0.866 + 0.5i)5-s + 0.999·6-s + (−0.5 + 0.866i)7-s − i·8-s + (0.499 − 0.866i)9-s + (0.499 + 0.866i)10-s + (−0.866 + 0.499i)14-s + 0.999·15-s + (0.5 − 0.866i)16-s + (0.866 − 0.5i)17-s + (0.866 − 0.499i)18-s + 0.999i·21-s + (−0.866 − 0.5i)23-s + (−0.500 − 0.866i)24-s + ⋯ |
Λ(s)=(=(3549s/2ΓC(s)L(s)(0.997−0.0633i)Λ(1−s)
Λ(s)=(=(3549s/2ΓC(s)L(s)(0.997−0.0633i)Λ(1−s)
Degree: |
2 |
Conductor: |
3549
= 3⋅7⋅132
|
Sign: |
0.997−0.0633i
|
Analytic conductor: |
1.77118 |
Root analytic conductor: |
1.33085 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3549(170,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3549, ( :0), 0.997−0.0633i)
|
Particular Values
L(21) |
≈ |
2.875039495 |
L(21) |
≈ |
2.875039495 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.866+0.5i)T |
| 7 | 1+(0.5−0.866i)T |
| 13 | 1 |
good | 2 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 5 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 11 | 1+(0.5−0.866i)T2 |
| 17 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 19 | 1+(−0.5−0.866i)T2 |
| 23 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 29 | 1−iT−T2 |
| 31 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 37 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 41 | 1+iT−T2 |
| 43 | 1−T+T2 |
| 47 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 53 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 59 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 61 | 1+(−0.5−0.866i)T2 |
| 67 | 1+(−0.5+0.866i)T2 |
| 71 | 1−iT−T2 |
| 73 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 79 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 97 | 1+T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.843098293354370364654632904539, −7.86143824559818728660054651268, −7.01079897730449712325292416779, −6.42933274499263184945330649007, −5.87209672797094643549803054868, −5.16822631286312359879695882913, −4.08736645078950007892335390638, −3.13063636244558393235943834579, −2.57439242690243099995285761355, −1.40031750657258055488451401178,
1.58650792027432124703707891705, 2.46360901423523538128158775844, 3.40983729907087796069023361136, 3.98956672634286970689886381270, 4.64067466894784541431617508837, 5.56522204954389770241310280453, 6.17991199966726997296602831919, 7.58347333446950415766391377478, 7.913524147935687966006768327190, 8.865495134880672236171595117142