L(s) = 1 | + (0.866 + 0.5i)3-s + (0.866 + 0.5i)4-s − i·7-s + (0.499 + 0.866i)9-s + (0.499 + 0.866i)12-s + (0.499 + 0.866i)16-s + (−0.133 + 0.5i)19-s + (0.5 − 0.866i)21-s + (−0.866 − 0.5i)25-s + 0.999i·27-s + (0.5 − 0.866i)28-s + (1.36 − 0.366i)31-s + 0.999i·36-s + (−0.5 + 1.86i)37-s − 1.73i·43-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)3-s + (0.866 + 0.5i)4-s − i·7-s + (0.499 + 0.866i)9-s + (0.499 + 0.866i)12-s + (0.499 + 0.866i)16-s + (−0.133 + 0.5i)19-s + (0.5 − 0.866i)21-s + (−0.866 − 0.5i)25-s + 0.999i·27-s + (0.5 − 0.866i)28-s + (1.36 − 0.366i)31-s + 0.999i·36-s + (−0.5 + 1.86i)37-s − 1.73i·43-s + ⋯ |
Λ(s)=(=(3549s/2ΓC(s)L(s)(0.763−0.645i)Λ(1−s)
Λ(s)=(=(3549s/2ΓC(s)L(s)(0.763−0.645i)Λ(1−s)
Degree: |
2 |
Conductor: |
3549
= 3⋅7⋅132
|
Sign: |
0.763−0.645i
|
Analytic conductor: |
1.77118 |
Root analytic conductor: |
1.33085 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3549(1760,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3549, ( :0), 0.763−0.645i)
|
Particular Values
L(21) |
≈ |
2.156947728 |
L(21) |
≈ |
2.156947728 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.866−0.5i)T |
| 7 | 1+iT |
| 13 | 1 |
good | 2 | 1+(−0.866−0.5i)T2 |
| 5 | 1+(0.866+0.5i)T2 |
| 11 | 1+(−0.866+0.5i)T2 |
| 17 | 1+(0.5+0.866i)T2 |
| 19 | 1+(0.133−0.5i)T+(−0.866−0.5i)T2 |
| 23 | 1+(−0.5+0.866i)T2 |
| 29 | 1−T2 |
| 31 | 1+(−1.36+0.366i)T+(0.866−0.5i)T2 |
| 37 | 1+(0.5−1.86i)T+(−0.866−0.5i)T2 |
| 41 | 1−iT2 |
| 43 | 1+1.73iT−T2 |
| 47 | 1+(−0.866−0.5i)T2 |
| 53 | 1+(0.5+0.866i)T2 |
| 59 | 1+(0.866−0.5i)T2 |
| 61 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 67 | 1+(−0.366−1.36i)T+(−0.866+0.5i)T2 |
| 71 | 1+iT2 |
| 73 | 1+(0.5+1.86i)T+(−0.866+0.5i)T2 |
| 79 | 1+(−0.5+0.866i)T2 |
| 83 | 1−iT2 |
| 89 | 1+(−0.866−0.5i)T2 |
| 97 | 1+(1.36+1.36i)T+iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.467482654682537256233776909777, −8.224515417755292801547829713750, −7.39800053113114581642090763855, −6.84243264972210066045982469751, −5.96960983158638657413887327335, −4.76939617025721734329560526040, −3.99492278977204482655334756746, −3.38069923798820802894288882083, −2.49807628446436336015765398928, −1.54132167699311601105641325056,
1.29292888654026365294802064565, 2.28374824693824292094815139105, 2.76652666260140134675378462976, 3.78752850608061866641817781884, 4.99699419022999316002492966693, 5.86601560726842506765778402557, 6.47348845057185527055172146407, 7.18980379388200915578803852445, 7.927650670350366899283112586007, 8.586625890859466504272731828197