L(s) = 1 | + (0.866 + 0.5i)3-s + (0.866 + 0.5i)4-s − i·7-s + (0.499 + 0.866i)9-s + (0.499 + 0.866i)12-s + (0.499 + 0.866i)16-s + (−0.133 + 0.5i)19-s + (0.5 − 0.866i)21-s + (−0.866 − 0.5i)25-s + 0.999i·27-s + (0.5 − 0.866i)28-s + (1.36 − 0.366i)31-s + 0.999i·36-s + (−0.5 + 1.86i)37-s − 1.73i·43-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)3-s + (0.866 + 0.5i)4-s − i·7-s + (0.499 + 0.866i)9-s + (0.499 + 0.866i)12-s + (0.499 + 0.866i)16-s + (−0.133 + 0.5i)19-s + (0.5 − 0.866i)21-s + (−0.866 − 0.5i)25-s + 0.999i·27-s + (0.5 − 0.866i)28-s + (1.36 − 0.366i)31-s + 0.999i·36-s + (−0.5 + 1.86i)37-s − 1.73i·43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3549 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.763 - 0.645i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3549 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.763 - 0.645i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.156947728\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.156947728\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + iT \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 5 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 11 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.133 - 0.5i)T + (-0.866 - 0.5i)T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 37 | \( 1 + (0.5 - 1.86i)T + (-0.866 - 0.5i)T^{2} \) |
| 41 | \( 1 - iT^{2} \) |
| 43 | \( 1 + 1.73iT - T^{2} \) |
| 47 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.366 - 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 71 | \( 1 + iT^{2} \) |
| 73 | \( 1 + (0.5 + 1.86i)T + (-0.866 + 0.5i)T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 97 | \( 1 + (1.36 + 1.36i)T + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.467482654682537256233776909777, −8.224515417755292801547829713750, −7.39800053113114581642090763855, −6.84243264972210066045982469751, −5.96960983158638657413887327335, −4.76939617025721734329560526040, −3.99492278977204482655334756746, −3.38069923798820802894288882083, −2.49807628446436336015765398928, −1.54132167699311601105641325056,
1.29292888654026365294802064565, 2.28374824693824292094815139105, 2.76652666260140134675378462976, 3.78752850608061866641817781884, 4.99699419022999316002492966693, 5.86601560726842506765778402557, 6.47348845057185527055172146407, 7.18980379388200915578803852445, 7.927650670350366899283112586007, 8.586625890859466504272731828197