L(s) = 1 | + (−1.37 − 0.331i)2-s + (1.78 + 0.910i)4-s + (1.64 − 1.51i)5-s + 0.936·7-s + (−2.14 − 1.84i)8-s + (−2.76 + 1.53i)10-s − 2.20i·11-s + 3.33·13-s + (−1.28 − 0.310i)14-s + (2.34 + 3.24i)16-s − 1.54·17-s − 3.12·19-s + (4.31 − 1.18i)20-s + (−0.731 + 3.03i)22-s + 3.39i·23-s + ⋯ |
L(s) = 1 | + (−0.972 − 0.234i)2-s + (0.890 + 0.455i)4-s + (0.737 − 0.675i)5-s + 0.353·7-s + (−0.759 − 0.650i)8-s + (−0.875 + 0.483i)10-s − 0.665i·11-s + 0.924·13-s + (−0.344 − 0.0828i)14-s + (0.585 + 0.810i)16-s − 0.374·17-s − 0.716·19-s + (0.964 − 0.265i)20-s + (−0.155 + 0.647i)22-s + 0.707i·23-s + ⋯ |
Λ(s)=(=(360s/2ΓC(s)L(s)(0.603+0.797i)Λ(2−s)
Λ(s)=(=(360s/2ΓC(s+1/2)L(s)(0.603+0.797i)Λ(1−s)
Degree: |
2 |
Conductor: |
360
= 23⋅32⋅5
|
Sign: |
0.603+0.797i
|
Analytic conductor: |
2.87461 |
Root analytic conductor: |
1.69546 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ360(179,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 360, ( :1/2), 0.603+0.797i)
|
Particular Values
L(1) |
≈ |
0.930989−0.462834i |
L(21) |
≈ |
0.930989−0.462834i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.37+0.331i)T |
| 3 | 1 |
| 5 | 1+(−1.64+1.51i)T |
good | 7 | 1−0.936T+7T2 |
| 11 | 1+2.20iT−11T2 |
| 13 | 1−3.33T+13T2 |
| 17 | 1+1.54T+17T2 |
| 19 | 1+3.12T+19T2 |
| 23 | 1−3.39iT−23T2 |
| 29 | 1−8.44T+29T2 |
| 31 | 1+8.30iT−31T2 |
| 37 | 1−7.60T+37T2 |
| 41 | 1+5.83iT−41T2 |
| 43 | 1+7.77iT−43T2 |
| 47 | 1−10.7iT−47T2 |
| 53 | 1+5.08iT−53T2 |
| 59 | 1−10.6iT−59T2 |
| 61 | 1−61T2 |
| 67 | 1−12.1iT−67T2 |
| 71 | 1+11.7T+71T2 |
| 73 | 1−5.59iT−73T2 |
| 79 | 1+1.02iT−79T2 |
| 83 | 1−14.0T+83T2 |
| 89 | 1−13.0iT−89T2 |
| 97 | 1−2.18iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.13517502896787436159661703667, −10.35224192307352974266320962456, −9.344844670648950130854113286643, −8.632195492127046384920777036026, −7.925360457674972738311337989531, −6.49581414082637806121756328410, −5.72379553783218024242215926163, −4.12552380598186158490468204218, −2.49001092251217997144707563880, −1.10666746908855797198803650685,
1.62646792372811048951692543950, 2.88542075493203085944204256910, 4.81288647588673909455643605621, 6.27417417565894895621362699591, 6.68535945384832595423293101179, 7.965933928964309246935863025603, 8.791794066790340558251374376177, 9.785213533647176176815376471047, 10.56655776140896249823488319813, 11.15399833685619417019131939118