Properties

Label 360.2.m.c.179.2
Level $360$
Weight $2$
Character 360.179
Analytic conductor $2.875$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [360,2,Mod(179,360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(360, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("360.179");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 360.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.87461447277\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 17x^{12} - 104x^{10} + 713x^{8} + 238x^{6} + 1004x^{4} - 152x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 179.2
Root \(-0.877859 - 2.23141i\) of defining polynomial
Character \(\chi\) \(=\) 360.179
Dual form 360.2.m.c.179.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.37491 - 0.331077i) q^{2} +(1.78078 + 0.910404i) q^{4} +(1.64901 - 1.51022i) q^{5} +0.936426 q^{7} +(-2.14700 - 1.84130i) q^{8} +(-2.76724 + 1.53048i) q^{10} -2.20837i q^{11} +3.33513 q^{13} +(-1.28751 - 0.310029i) q^{14} +(2.34233 + 3.24245i) q^{16} -1.54417 q^{17} -3.12311 q^{19} +(4.31143 - 1.18811i) q^{20} +(-0.731140 + 3.03632i) q^{22} +3.39228i q^{23} +(0.438447 - 4.98074i) q^{25} +(-4.58552 - 1.10418i) q^{26} +(1.66757 + 0.852526i) q^{28} +8.44804 q^{29} -8.30571i q^{31} +(-2.14700 - 5.23358i) q^{32} +(2.12311 + 0.511240i) q^{34} +(1.54417 - 1.41421i) q^{35} +7.60669 q^{37} +(4.29400 + 1.03399i) q^{38} +(-6.32120 + 0.206134i) q^{40} -5.83095i q^{41} -7.77769i q^{43} +(2.01051 - 3.93261i) q^{44} +(1.12311 - 4.66410i) q^{46} +10.7575i q^{47} -6.12311 q^{49} +(-2.25183 + 6.70293i) q^{50} +(5.93912 + 3.03632i) q^{52} -5.08842i q^{53} +(-3.33513 - 3.64162i) q^{55} +(-2.01051 - 1.72424i) q^{56} +(-11.6153 - 2.79695i) q^{58} +10.6937i q^{59} +(-2.74983 + 11.4196i) q^{62} +(1.21922 + 7.90655i) q^{64} +(5.49966 - 5.03680i) q^{65} +12.1453i q^{67} +(-2.74983 - 1.40582i) q^{68} +(-2.59132 + 1.43318i) q^{70} -11.7460 q^{71} +5.59390i q^{73} +(-10.4585 - 2.51840i) q^{74} +(-5.56155 - 2.84329i) q^{76} -2.06798i q^{77} -1.02248i q^{79} +(8.75935 + 1.80938i) q^{80} +(-1.93049 + 8.01706i) q^{82} +14.0877 q^{83} +(-2.54635 + 2.33205i) q^{85} +(-2.57501 + 10.6937i) q^{86} +(-4.06627 + 4.74137i) q^{88} +13.0761i q^{89} +3.12311 q^{91} +(-3.08835 + 6.04090i) q^{92} +(3.56155 - 14.7906i) q^{94} +(-5.15002 + 4.71659i) q^{95} +2.18379i q^{97} +(8.41874 + 2.02722i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 12 q^{4} - 8 q^{10} - 12 q^{16} + 16 q^{19} + 40 q^{25} - 32 q^{34} - 28 q^{40} - 48 q^{46} - 32 q^{49} + 36 q^{64} + 32 q^{70} - 56 q^{76} - 16 q^{91} + 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/360\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(217\) \(271\) \(281\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.37491 0.331077i −0.972211 0.234107i
\(3\) 0 0
\(4\) 1.78078 + 0.910404i 0.890388 + 0.455202i
\(5\) 1.64901 1.51022i 0.737458 0.675393i
\(6\) 0 0
\(7\) 0.936426 0.353936 0.176968 0.984217i \(-0.443371\pi\)
0.176968 + 0.984217i \(0.443371\pi\)
\(8\) −2.14700 1.84130i −0.759079 0.650998i
\(9\) 0 0
\(10\) −2.76724 + 1.53048i −0.875079 + 0.483980i
\(11\) 2.20837i 0.665848i −0.942954 0.332924i \(-0.891965\pi\)
0.942954 0.332924i \(-0.108035\pi\)
\(12\) 0 0
\(13\) 3.33513 0.924999 0.462500 0.886619i \(-0.346953\pi\)
0.462500 + 0.886619i \(0.346953\pi\)
\(14\) −1.28751 0.310029i −0.344100 0.0828587i
\(15\) 0 0
\(16\) 2.34233 + 3.24245i 0.585582 + 0.810613i
\(17\) −1.54417 −0.374517 −0.187259 0.982311i \(-0.559960\pi\)
−0.187259 + 0.982311i \(0.559960\pi\)
\(18\) 0 0
\(19\) −3.12311 −0.716490 −0.358245 0.933628i \(-0.616625\pi\)
−0.358245 + 0.933628i \(0.616625\pi\)
\(20\) 4.31143 1.18811i 0.964064 0.265669i
\(21\) 0 0
\(22\) −0.731140 + 3.03632i −0.155879 + 0.647345i
\(23\) 3.39228i 0.707340i 0.935370 + 0.353670i \(0.115066\pi\)
−0.935370 + 0.353670i \(0.884934\pi\)
\(24\) 0 0
\(25\) 0.438447 4.98074i 0.0876894 0.996148i
\(26\) −4.58552 1.10418i −0.899294 0.216548i
\(27\) 0 0
\(28\) 1.66757 + 0.852526i 0.315140 + 0.161112i
\(29\) 8.44804 1.56876 0.784380 0.620280i \(-0.212981\pi\)
0.784380 + 0.620280i \(0.212981\pi\)
\(30\) 0 0
\(31\) 8.30571i 1.49175i −0.666086 0.745875i \(-0.732032\pi\)
0.666086 0.745875i \(-0.267968\pi\)
\(32\) −2.14700 5.23358i −0.379540 0.925175i
\(33\) 0 0
\(34\) 2.12311 + 0.511240i 0.364110 + 0.0876769i
\(35\) 1.54417 1.41421i 0.261013 0.239046i
\(36\) 0 0
\(37\) 7.60669 1.25053 0.625266 0.780412i \(-0.284990\pi\)
0.625266 + 0.780412i \(0.284990\pi\)
\(38\) 4.29400 + 1.03399i 0.696579 + 0.167735i
\(39\) 0 0
\(40\) −6.32120 + 0.206134i −0.999469 + 0.0325927i
\(41\) 5.83095i 0.910642i −0.890327 0.455321i \(-0.849525\pi\)
0.890327 0.455321i \(-0.150475\pi\)
\(42\) 0 0
\(43\) 7.77769i 1.18609i −0.805171 0.593043i \(-0.797926\pi\)
0.805171 0.593043i \(-0.202074\pi\)
\(44\) 2.01051 3.93261i 0.303095 0.592864i
\(45\) 0 0
\(46\) 1.12311 4.66410i 0.165593 0.687683i
\(47\) 10.7575i 1.56914i 0.620040 + 0.784570i \(0.287116\pi\)
−0.620040 + 0.784570i \(0.712884\pi\)
\(48\) 0 0
\(49\) −6.12311 −0.874729
\(50\) −2.25183 + 6.70293i −0.318457 + 0.947937i
\(51\) 0 0
\(52\) 5.93912 + 3.03632i 0.823608 + 0.421061i
\(53\) 5.08842i 0.698949i −0.936946 0.349474i \(-0.886360\pi\)
0.936946 0.349474i \(-0.113640\pi\)
\(54\) 0 0
\(55\) −3.33513 3.64162i −0.449709 0.491035i
\(56\) −2.01051 1.72424i −0.268665 0.230412i
\(57\) 0 0
\(58\) −11.6153 2.79695i −1.52517 0.367257i
\(59\) 10.6937i 1.39219i 0.717947 + 0.696097i \(0.245082\pi\)
−0.717947 + 0.696097i \(0.754918\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) −2.74983 + 11.4196i −0.349228 + 1.45030i
\(63\) 0 0
\(64\) 1.21922 + 7.90655i 0.152403 + 0.988318i
\(65\) 5.49966 5.03680i 0.682148 0.624738i
\(66\) 0 0
\(67\) 12.1453i 1.48378i 0.670521 + 0.741890i \(0.266071\pi\)
−0.670521 + 0.741890i \(0.733929\pi\)
\(68\) −2.74983 1.40582i −0.333466 0.170481i
\(69\) 0 0
\(70\) −2.59132 + 1.43318i −0.309722 + 0.171298i
\(71\) −11.7460 −1.39400 −0.697000 0.717071i \(-0.745482\pi\)
−0.697000 + 0.717071i \(0.745482\pi\)
\(72\) 0 0
\(73\) 5.59390i 0.654716i 0.944900 + 0.327358i \(0.106158\pi\)
−0.944900 + 0.327358i \(0.893842\pi\)
\(74\) −10.4585 2.51840i −1.21578 0.292758i
\(75\) 0 0
\(76\) −5.56155 2.84329i −0.637954 0.326147i
\(77\) 2.06798i 0.235668i
\(78\) 0 0
\(79\) 1.02248i 0.115038i −0.998344 0.0575190i \(-0.981681\pi\)
0.998344 0.0575190i \(-0.0183190\pi\)
\(80\) 8.75935 + 1.80938i 0.979325 + 0.202295i
\(81\) 0 0
\(82\) −1.93049 + 8.01706i −0.213187 + 0.885336i
\(83\) 14.0877 1.54632 0.773161 0.634210i \(-0.218675\pi\)
0.773161 + 0.634210i \(0.218675\pi\)
\(84\) 0 0
\(85\) −2.54635 + 2.33205i −0.276191 + 0.252946i
\(86\) −2.57501 + 10.6937i −0.277671 + 1.15313i
\(87\) 0 0
\(88\) −4.06627 + 4.74137i −0.433466 + 0.505432i
\(89\) 13.0761i 1.38607i 0.720906 + 0.693033i \(0.243726\pi\)
−0.720906 + 0.693033i \(0.756274\pi\)
\(90\) 0 0
\(91\) 3.12311 0.327390
\(92\) −3.08835 + 6.04090i −0.321982 + 0.629807i
\(93\) 0 0
\(94\) 3.56155 14.7906i 0.367346 1.52554i
\(95\) −5.15002 + 4.71659i −0.528381 + 0.483912i
\(96\) 0 0
\(97\) 2.18379i 0.221730i 0.993835 + 0.110865i \(0.0353622\pi\)
−0.993835 + 0.110865i \(0.964638\pi\)
\(98\) 8.41874 + 2.02722i 0.850421 + 0.204780i
\(99\) 0 0
\(100\) 5.31526 8.47042i 0.531526 0.847042i
\(101\) 3.29801 0.328165 0.164082 0.986447i \(-0.447534\pi\)
0.164082 + 0.986447i \(0.447534\pi\)
\(102\) 0 0
\(103\) −18.0227 −1.77583 −0.887913 0.460012i \(-0.847845\pi\)
−0.887913 + 0.460012i \(0.847845\pi\)
\(104\) −7.16053 6.14098i −0.702148 0.602173i
\(105\) 0 0
\(106\) −1.68466 + 6.99614i −0.163628 + 0.679526i
\(107\) −10.9993 −1.06334 −0.531672 0.846950i \(-0.678436\pi\)
−0.531672 + 0.846950i \(0.678436\pi\)
\(108\) 0 0
\(109\) 11.9473i 1.14435i 0.820133 + 0.572173i \(0.193900\pi\)
−0.820133 + 0.572173i \(0.806100\pi\)
\(110\) 3.37987 + 6.11109i 0.322257 + 0.582670i
\(111\) 0 0
\(112\) 2.19342 + 3.03632i 0.207259 + 0.286905i
\(113\) −12.5435 −1.17999 −0.589996 0.807406i \(-0.700871\pi\)
−0.589996 + 0.807406i \(0.700871\pi\)
\(114\) 0 0
\(115\) 5.12311 + 5.59390i 0.477732 + 0.521634i
\(116\) 15.0441 + 7.69113i 1.39681 + 0.714103i
\(117\) 0 0
\(118\) 3.54042 14.7028i 0.325922 1.35351i
\(119\) −1.44600 −0.132555
\(120\) 0 0
\(121\) 6.12311 0.556646
\(122\) 0 0
\(123\) 0 0
\(124\) 7.56155 14.7906i 0.679047 1.32824i
\(125\) −6.79903 8.87543i −0.608124 0.793842i
\(126\) 0 0
\(127\) 4.68213 0.415472 0.207736 0.978185i \(-0.433391\pi\)
0.207736 + 0.978185i \(0.433391\pi\)
\(128\) 0.941346 11.2745i 0.0832041 0.996533i
\(129\) 0 0
\(130\) −9.22912 + 5.10435i −0.809447 + 0.447681i
\(131\) 0.620058i 0.0541747i −0.999633 0.0270874i \(-0.991377\pi\)
0.999633 0.0270874i \(-0.00862323\pi\)
\(132\) 0 0
\(133\) −2.92456 −0.253591
\(134\) 4.02102 16.6987i 0.347363 1.44255i
\(135\) 0 0
\(136\) 3.31534 + 2.84329i 0.284288 + 0.243810i
\(137\) −1.54417 −0.131928 −0.0659638 0.997822i \(-0.521012\pi\)
−0.0659638 + 0.997822i \(0.521012\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 4.03733 1.11258i 0.341217 0.0940299i
\(141\) 0 0
\(142\) 16.1498 + 3.88884i 1.35526 + 0.326345i
\(143\) 7.36520i 0.615909i
\(144\) 0 0
\(145\) 13.9309 12.7584i 1.15690 1.05953i
\(146\) 1.85201 7.69113i 0.153273 0.636522i
\(147\) 0 0
\(148\) 13.5458 + 6.92516i 1.11346 + 0.569245i
\(149\) 1.85201 0.151722 0.0758612 0.997118i \(-0.475829\pi\)
0.0758612 + 0.997118i \(0.475829\pi\)
\(150\) 0 0
\(151\) 17.6339i 1.43503i 0.696545 + 0.717513i \(0.254720\pi\)
−0.696545 + 0.717513i \(0.745280\pi\)
\(152\) 6.70531 + 5.75058i 0.543872 + 0.466433i
\(153\) 0 0
\(154\) −0.684658 + 2.84329i −0.0551713 + 0.229119i
\(155\) −12.5435 13.6962i −1.00752 1.10010i
\(156\) 0 0
\(157\) −2.80928 −0.224205 −0.112102 0.993697i \(-0.535758\pi\)
−0.112102 + 0.993697i \(0.535758\pi\)
\(158\) −0.338519 + 1.40582i −0.0269311 + 0.111841i
\(159\) 0 0
\(160\) −11.4443 5.38776i −0.904751 0.425940i
\(161\) 3.17662i 0.250353i
\(162\) 0 0
\(163\) 15.5554i 1.21839i −0.793020 0.609195i \(-0.791492\pi\)
0.793020 0.609195i \(-0.208508\pi\)
\(164\) 5.30852 10.3836i 0.414526 0.810825i
\(165\) 0 0
\(166\) −19.3693 4.66410i −1.50335 0.362004i
\(167\) 9.43318i 0.729961i −0.931015 0.364981i \(-0.881076\pi\)
0.931015 0.364981i \(-0.118924\pi\)
\(168\) 0 0
\(169\) −1.87689 −0.144376
\(170\) 4.27310 2.36333i 0.327732 0.181259i
\(171\) 0 0
\(172\) 7.08084 13.8503i 0.539909 1.05608i
\(173\) 1.69614i 0.128955i 0.997919 + 0.0644776i \(0.0205381\pi\)
−0.997919 + 0.0644776i \(0.979462\pi\)
\(174\) 0 0
\(175\) 0.410574 4.66410i 0.0310364 0.352572i
\(176\) 7.16053 5.17273i 0.539745 0.389909i
\(177\) 0 0
\(178\) 4.32920 17.9785i 0.324487 1.34755i
\(179\) 8.21342i 0.613900i 0.951726 + 0.306950i \(0.0993084\pi\)
−0.951726 + 0.306950i \(0.900692\pi\)
\(180\) 0 0
\(181\) 4.66410i 0.346680i 0.984862 + 0.173340i \(0.0554559\pi\)
−0.984862 + 0.173340i \(0.944544\pi\)
\(182\) −4.29400 1.03399i −0.318293 0.0766443i
\(183\) 0 0
\(184\) 6.24621 7.28323i 0.460477 0.536927i
\(185\) 12.5435 11.4878i 0.922215 0.844600i
\(186\) 0 0
\(187\) 3.41011i 0.249372i
\(188\) −9.79366 + 19.1567i −0.714276 + 1.39714i
\(189\) 0 0
\(190\) 8.64239 4.77985i 0.626985 0.346767i
\(191\) 13.1921 0.954544 0.477272 0.878756i \(-0.341626\pi\)
0.477272 + 0.878756i \(0.341626\pi\)
\(192\) 0 0
\(193\) 23.3331i 1.67955i 0.542934 + 0.839775i \(0.317313\pi\)
−0.542934 + 0.839775i \(0.682687\pi\)
\(194\) 0.723002 3.00252i 0.0519085 0.215569i
\(195\) 0 0
\(196\) −10.9039 5.57450i −0.778849 0.398179i
\(197\) 4.92539i 0.350920i −0.984487 0.175460i \(-0.943859\pi\)
0.984487 0.175460i \(-0.0561412\pi\)
\(198\) 0 0
\(199\) 17.6339i 1.25003i 0.780611 + 0.625017i \(0.214908\pi\)
−0.780611 + 0.625017i \(0.785092\pi\)
\(200\) −10.1124 + 9.88634i −0.715054 + 0.699070i
\(201\) 0 0
\(202\) −4.53448 1.09190i −0.319045 0.0768255i
\(203\) 7.91096 0.555241
\(204\) 0 0
\(205\) −8.80604 9.61528i −0.615041 0.671560i
\(206\) 24.7796 + 5.96688i 1.72648 + 0.415732i
\(207\) 0 0
\(208\) 7.81198 + 10.8140i 0.541663 + 0.749816i
\(209\) 6.89697i 0.477073i
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 4.63252 9.06134i 0.318163 0.622336i
\(213\) 0 0
\(214\) 15.1231 + 3.64162i 1.03379 + 0.248936i
\(215\) −11.7460 12.8255i −0.801074 0.874689i
\(216\) 0 0
\(217\) 7.77769i 0.527984i
\(218\) 3.95548 16.4265i 0.267899 1.11255i
\(219\) 0 0
\(220\) −2.62378 9.52122i −0.176895 0.641921i
\(221\) −5.15002 −0.346428
\(222\) 0 0
\(223\) 21.9989 1.47316 0.736578 0.676352i \(-0.236440\pi\)
0.736578 + 0.676352i \(0.236440\pi\)
\(224\) −2.01051 4.90086i −0.134333 0.327453i
\(225\) 0 0
\(226\) 17.2462 + 4.15286i 1.14720 + 0.276244i
\(227\) −3.08835 −0.204981 −0.102490 0.994734i \(-0.532681\pi\)
−0.102490 + 0.994734i \(0.532681\pi\)
\(228\) 0 0
\(229\) 2.61914i 0.173077i 0.996248 + 0.0865387i \(0.0275806\pi\)
−0.996248 + 0.0865387i \(0.972419\pi\)
\(230\) −5.19182 9.38727i −0.342338 0.618978i
\(231\) 0 0
\(232\) −18.1379 15.5554i −1.19081 1.02126i
\(233\) −20.4544 −1.34002 −0.670008 0.742354i \(-0.733709\pi\)
−0.670008 + 0.742354i \(0.733709\pi\)
\(234\) 0 0
\(235\) 16.2462 + 17.7392i 1.05979 + 1.15718i
\(236\) −9.73554 + 19.0430i −0.633730 + 1.23959i
\(237\) 0 0
\(238\) 1.98813 + 0.478739i 0.128871 + 0.0310320i
\(239\) 23.4921 1.51958 0.759789 0.650170i \(-0.225302\pi\)
0.759789 + 0.650170i \(0.225302\pi\)
\(240\) 0 0
\(241\) −4.00000 −0.257663 −0.128831 0.991667i \(-0.541123\pi\)
−0.128831 + 0.991667i \(0.541123\pi\)
\(242\) −8.41874 2.02722i −0.541177 0.130314i
\(243\) 0 0
\(244\) 0 0
\(245\) −10.0970 + 9.24726i −0.645076 + 0.590786i
\(246\) 0 0
\(247\) −10.4160 −0.662752
\(248\) −15.2933 + 17.8324i −0.971126 + 1.13236i
\(249\) 0 0
\(250\) 6.40963 + 14.4539i 0.405381 + 0.914148i
\(251\) 3.44849i 0.217666i −0.994060 0.108833i \(-0.965289\pi\)
0.994060 0.108833i \(-0.0347114\pi\)
\(252\) 0 0
\(253\) 7.49141 0.470981
\(254\) −6.43753 1.55014i −0.403926 0.0972647i
\(255\) 0 0
\(256\) −5.02699 + 15.1898i −0.314187 + 0.949361i
\(257\) 15.6318 0.975087 0.487543 0.873099i \(-0.337893\pi\)
0.487543 + 0.873099i \(0.337893\pi\)
\(258\) 0 0
\(259\) 7.12311 0.442608
\(260\) 14.3792 3.96250i 0.891759 0.245744i
\(261\) 0 0
\(262\) −0.205287 + 0.852526i −0.0126827 + 0.0526693i
\(263\) 14.7304i 0.908316i −0.890921 0.454158i \(-0.849940\pi\)
0.890921 0.454158i \(-0.150060\pi\)
\(264\) 0 0
\(265\) −7.68466 8.39084i −0.472065 0.515445i
\(266\) 4.02102 + 0.968253i 0.246544 + 0.0593674i
\(267\) 0 0
\(268\) −11.0571 + 21.6280i −0.675420 + 1.32114i
\(269\) −15.0441 −0.917253 −0.458626 0.888629i \(-0.651658\pi\)
−0.458626 + 0.888629i \(0.651658\pi\)
\(270\) 0 0
\(271\) 10.3507i 0.628758i −0.949297 0.314379i \(-0.898204\pi\)
0.949297 0.314379i \(-0.101796\pi\)
\(272\) −3.61696 5.00691i −0.219311 0.303588i
\(273\) 0 0
\(274\) 2.12311 + 0.511240i 0.128262 + 0.0308851i
\(275\) −10.9993 0.968253i −0.663283 0.0583879i
\(276\) 0 0
\(277\) −23.3459 −1.40272 −0.701360 0.712807i \(-0.747424\pi\)
−0.701360 + 0.712807i \(0.747424\pi\)
\(278\) 16.4990 + 3.97292i 0.989542 + 0.238280i
\(279\) 0 0
\(280\) −5.91933 + 0.193030i −0.353748 + 0.0115357i
\(281\) 3.00252i 0.179116i −0.995982 0.0895578i \(-0.971455\pi\)
0.995982 0.0895578i \(-0.0285454\pi\)
\(282\) 0 0
\(283\) 23.3331i 1.38701i −0.720453 0.693503i \(-0.756066\pi\)
0.720453 0.693503i \(-0.243934\pi\)
\(284\) −20.9171 10.6937i −1.24120 0.634551i
\(285\) 0 0
\(286\) −2.43845 + 10.1265i −0.144188 + 0.598794i
\(287\) 5.46026i 0.322309i
\(288\) 0 0
\(289\) −14.6155 −0.859737
\(290\) −23.3778 + 12.9296i −1.37279 + 0.759249i
\(291\) 0 0
\(292\) −5.09271 + 9.96148i −0.298028 + 0.582951i
\(293\) 29.8326i 1.74284i 0.490536 + 0.871421i \(0.336801\pi\)
−0.490536 + 0.871421i \(0.663199\pi\)
\(294\) 0 0
\(295\) 16.1498 + 17.6339i 0.940278 + 1.02669i
\(296\) −16.3316 14.0062i −0.949253 0.814094i
\(297\) 0 0
\(298\) −2.54635 0.613157i −0.147506 0.0355192i
\(299\) 11.3137i 0.654289i
\(300\) 0 0
\(301\) 7.28323i 0.419799i
\(302\) 5.83817 24.2451i 0.335949 1.39515i
\(303\) 0 0
\(304\) −7.31534 10.1265i −0.419564 0.580796i
\(305\) 0 0
\(306\) 0 0
\(307\) 4.36758i 0.249271i −0.992203 0.124636i \(-0.960224\pi\)
0.992203 0.124636i \(-0.0397762\pi\)
\(308\) 1.88269 3.68260i 0.107276 0.209836i
\(309\) 0 0
\(310\) 12.7117 + 22.9839i 0.721978 + 1.30540i
\(311\) 10.3000 0.584062 0.292031 0.956409i \(-0.405669\pi\)
0.292031 + 0.956409i \(0.405669\pi\)
\(312\) 0 0
\(313\) 32.0682i 1.81260i 0.422631 + 0.906302i \(0.361107\pi\)
−0.422631 + 0.906302i \(0.638893\pi\)
\(314\) 3.86252 + 0.930087i 0.217974 + 0.0524878i
\(315\) 0 0
\(316\) 0.930870 1.82081i 0.0523655 0.102428i
\(317\) 24.5354i 1.37805i 0.724739 + 0.689023i \(0.241960\pi\)
−0.724739 + 0.689023i \(0.758040\pi\)
\(318\) 0 0
\(319\) 18.6564i 1.04456i
\(320\) 13.9512 + 11.1967i 0.779894 + 0.625912i
\(321\) 0 0
\(322\) 1.05171 4.36758i 0.0586093 0.243396i
\(323\) 4.82262 0.268338
\(324\) 0 0
\(325\) 1.46228 16.6114i 0.0811127 0.921436i
\(326\) −5.15002 + 21.3873i −0.285233 + 1.18453i
\(327\) 0 0
\(328\) −10.7365 + 12.5191i −0.592826 + 0.691249i
\(329\) 10.0736i 0.555375i
\(330\) 0 0
\(331\) −1.36932 −0.0752645 −0.0376322 0.999292i \(-0.511982\pi\)
−0.0376322 + 0.999292i \(0.511982\pi\)
\(332\) 25.0870 + 12.8255i 1.37683 + 0.703889i
\(333\) 0 0
\(334\) −3.12311 + 12.9698i −0.170889 + 0.709676i
\(335\) 18.3421 + 20.0276i 1.00213 + 1.09423i
\(336\) 0 0
\(337\) 29.8844i 1.62791i −0.580929 0.813954i \(-0.697310\pi\)
0.580929 0.813954i \(-0.302690\pi\)
\(338\) 2.58057 + 0.621396i 0.140364 + 0.0337995i
\(339\) 0 0
\(340\) −6.65759 + 1.83465i −0.361059 + 0.0994977i
\(341\) −18.3421 −0.993279
\(342\) 0 0
\(343\) −12.2888 −0.663534
\(344\) −14.3211 + 16.6987i −0.772140 + 0.900334i
\(345\) 0 0
\(346\) 0.561553 2.33205i 0.0301893 0.125372i
\(347\) 14.0877 0.756265 0.378133 0.925751i \(-0.376566\pi\)
0.378133 + 0.925751i \(0.376566\pi\)
\(348\) 0 0
\(349\) 33.2228i 1.77838i −0.457540 0.889189i \(-0.651269\pi\)
0.457540 0.889189i \(-0.348731\pi\)
\(350\) −2.10868 + 6.27680i −0.112714 + 0.335509i
\(351\) 0 0
\(352\) −11.5577 + 4.74137i −0.616027 + 0.252716i
\(353\) 7.72087 0.410940 0.205470 0.978663i \(-0.434128\pi\)
0.205470 + 0.978663i \(0.434128\pi\)
\(354\) 0 0
\(355\) −19.3693 + 17.7392i −1.02802 + 0.941497i
\(356\) −11.9045 + 23.2856i −0.630940 + 1.23414i
\(357\) 0 0
\(358\) 2.71927 11.2927i 0.143718 0.596840i
\(359\) −1.44600 −0.0763172 −0.0381586 0.999272i \(-0.512149\pi\)
−0.0381586 + 0.999272i \(0.512149\pi\)
\(360\) 0 0
\(361\) −9.24621 −0.486643
\(362\) 1.54417 6.41273i 0.0811600 0.337046i
\(363\) 0 0
\(364\) 5.56155 + 2.84329i 0.291505 + 0.149029i
\(365\) 8.44804 + 9.22437i 0.442190 + 0.482826i
\(366\) 0 0
\(367\) 32.4149 1.69204 0.846022 0.533148i \(-0.178991\pi\)
0.846022 + 0.533148i \(0.178991\pi\)
\(368\) −10.9993 + 7.94584i −0.573379 + 0.414206i
\(369\) 0 0
\(370\) −21.0496 + 11.6419i −1.09431 + 0.605233i
\(371\) 4.76493i 0.247383i
\(372\) 0 0
\(373\) 9.47954 0.490832 0.245416 0.969418i \(-0.421075\pi\)
0.245416 + 0.969418i \(0.421075\pi\)
\(374\) 1.12901 4.68860i 0.0583795 0.242442i
\(375\) 0 0
\(376\) 19.8078 23.0963i 1.02151 1.19110i
\(377\) 28.1753 1.45110
\(378\) 0 0
\(379\) −16.4924 −0.847159 −0.423579 0.905859i \(-0.639227\pi\)
−0.423579 + 0.905859i \(0.639227\pi\)
\(380\) −13.4650 + 3.71059i −0.690742 + 0.190349i
\(381\) 0 0
\(382\) −18.1379 4.36758i −0.928018 0.223465i
\(383\) 10.0138i 0.511682i 0.966719 + 0.255841i \(0.0823524\pi\)
−0.966719 + 0.255841i \(0.917648\pi\)
\(384\) 0 0
\(385\) −3.12311 3.41011i −0.159168 0.173795i
\(386\) 7.72503 32.0810i 0.393194 1.63288i
\(387\) 0 0
\(388\) −1.98813 + 3.88884i −0.100932 + 0.197426i
\(389\) 9.89404 0.501648 0.250824 0.968033i \(-0.419298\pi\)
0.250824 + 0.968033i \(0.419298\pi\)
\(390\) 0 0
\(391\) 5.23827i 0.264911i
\(392\) 13.1463 + 11.2745i 0.663989 + 0.569447i
\(393\) 0 0
\(394\) −1.63068 + 6.77199i −0.0821526 + 0.341168i
\(395\) −1.54417 1.68608i −0.0776958 0.0848357i
\(396\) 0 0
\(397\) −10.3007 −0.516977 −0.258488 0.966014i \(-0.583224\pi\)
−0.258488 + 0.966014i \(0.583224\pi\)
\(398\) 5.83817 24.2451i 0.292641 1.21530i
\(399\) 0 0
\(400\) 17.1768 10.2449i 0.858840 0.512244i
\(401\) 0.522293i 0.0260821i −0.999915 0.0130410i \(-0.995849\pi\)
0.999915 0.0130410i \(-0.00415121\pi\)
\(402\) 0 0
\(403\) 27.7006i 1.37987i
\(404\) 5.87302 + 3.00252i 0.292194 + 0.149381i
\(405\) 0 0
\(406\) −10.8769 2.61914i −0.539811 0.129986i
\(407\) 16.7984i 0.832665i
\(408\) 0 0
\(409\) 3.12311 0.154428 0.0772138 0.997015i \(-0.475398\pi\)
0.0772138 + 0.997015i \(0.475398\pi\)
\(410\) 8.92416 + 16.1357i 0.440733 + 0.796883i
\(411\) 0 0
\(412\) −32.0943 16.4079i −1.58117 0.808359i
\(413\) 10.0138i 0.492748i
\(414\) 0 0
\(415\) 23.2306 21.2755i 1.14035 1.04437i
\(416\) −7.16053 17.4547i −0.351074 0.855787i
\(417\) 0 0
\(418\) 2.28343 9.48274i 0.111686 0.463816i
\(419\) 32.4291i 1.58427i −0.610348 0.792134i \(-0.708970\pi\)
0.610348 0.792134i \(-0.291030\pi\)
\(420\) 0 0
\(421\) 30.6037i 1.49153i −0.666207 0.745767i \(-0.732083\pi\)
0.666207 0.745767i \(-0.267917\pi\)
\(422\) −5.49966 1.32431i −0.267719 0.0644663i
\(423\) 0 0
\(424\) −9.36932 + 10.9248i −0.455014 + 0.530558i
\(425\) −0.677039 + 7.69113i −0.0328412 + 0.373074i
\(426\) 0 0
\(427\) 0 0
\(428\) −19.5873 10.0138i −0.946789 0.484036i
\(429\) 0 0
\(430\) 11.9036 + 21.5227i 0.574042 + 1.03792i
\(431\) 1.44600 0.0696516 0.0348258 0.999393i \(-0.488912\pi\)
0.0348258 + 0.999393i \(0.488912\pi\)
\(432\) 0 0
\(433\) 15.5554i 0.747544i 0.927521 + 0.373772i \(0.121936\pi\)
−0.927521 + 0.373772i \(0.878064\pi\)
\(434\) −2.57501 + 10.6937i −0.123604 + 0.513312i
\(435\) 0 0
\(436\) −10.8769 + 21.2755i −0.520909 + 1.01891i
\(437\) 10.5945i 0.506802i
\(438\) 0 0
\(439\) 26.9621i 1.28683i 0.765517 + 0.643415i \(0.222483\pi\)
−0.765517 + 0.643415i \(0.777517\pi\)
\(440\) 0.455221 + 13.9595i 0.0217018 + 0.665495i
\(441\) 0 0
\(442\) 7.08084 + 1.70505i 0.336801 + 0.0811011i
\(443\) 25.0870 1.19192 0.595959 0.803015i \(-0.296772\pi\)
0.595959 + 0.803015i \(0.296772\pi\)
\(444\) 0 0
\(445\) 19.7479 + 21.5626i 0.936139 + 1.02217i
\(446\) −30.2466 7.28333i −1.43222 0.344876i
\(447\) 0 0
\(448\) 1.14171 + 7.40390i 0.0539409 + 0.349801i
\(449\) 9.89949i 0.467186i −0.972334 0.233593i \(-0.924952\pi\)
0.972334 0.233593i \(-0.0750483\pi\)
\(450\) 0 0
\(451\) −12.8769 −0.606349
\(452\) −22.3371 11.4196i −1.05065 0.537135i
\(453\) 0 0
\(454\) 4.24621 + 1.02248i 0.199285 + 0.0479874i
\(455\) 5.15002 4.71659i 0.241437 0.221117i
\(456\) 0 0
\(457\) 13.3716i 0.625496i −0.949836 0.312748i \(-0.898750\pi\)
0.949836 0.312748i \(-0.101250\pi\)
\(458\) 0.867135 3.60109i 0.0405186 0.168268i
\(459\) 0 0
\(460\) 4.03040 + 14.6256i 0.187918 + 0.681921i
\(461\) 1.85201 0.0862567 0.0431283 0.999070i \(-0.486268\pi\)
0.0431283 + 0.999070i \(0.486268\pi\)
\(462\) 0 0
\(463\) 13.2252 0.614629 0.307315 0.951608i \(-0.400570\pi\)
0.307315 + 0.951608i \(0.400570\pi\)
\(464\) 19.7881 + 27.3924i 0.918639 + 1.27166i
\(465\) 0 0
\(466\) 28.1231 + 6.77199i 1.30278 + 0.313706i
\(467\) −18.9103 −0.875063 −0.437532 0.899203i \(-0.644147\pi\)
−0.437532 + 0.899203i \(0.644147\pi\)
\(468\) 0 0
\(469\) 11.3732i 0.525163i
\(470\) −16.4641 29.7686i −0.759433 1.37312i
\(471\) 0 0
\(472\) 19.6902 22.9593i 0.906316 1.05679i
\(473\) −17.1760 −0.789754
\(474\) 0 0
\(475\) −1.36932 + 15.5554i −0.0628286 + 0.713730i
\(476\) −2.57501 1.31645i −0.118025 0.0603393i
\(477\) 0 0
\(478\) −32.2996 7.77769i −1.47735 0.355743i
\(479\) 14.6381 0.668830 0.334415 0.942426i \(-0.391461\pi\)
0.334415 + 0.942426i \(0.391461\pi\)
\(480\) 0 0
\(481\) 25.3693 1.15674
\(482\) 5.49966 + 1.32431i 0.250502 + 0.0603205i
\(483\) 0 0
\(484\) 10.9039 + 5.57450i 0.495631 + 0.253386i
\(485\) 3.29801 + 3.60109i 0.149755 + 0.163517i
\(486\) 0 0
\(487\) −29.4903 −1.33633 −0.668167 0.744011i \(-0.732921\pi\)
−0.668167 + 0.744011i \(0.732921\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 16.9441 9.37129i 0.765457 0.423352i
\(491\) 16.3505i 0.737888i −0.929452 0.368944i \(-0.879719\pi\)
0.929452 0.368944i \(-0.120281\pi\)
\(492\) 0 0
\(493\) −13.0452 −0.587528
\(494\) 14.3211 + 3.44849i 0.644335 + 0.155155i
\(495\) 0 0
\(496\) 26.9309 19.4547i 1.20923 0.873542i
\(497\) −10.9993 −0.493387
\(498\) 0 0
\(499\) 16.8769 0.755514 0.377757 0.925905i \(-0.376696\pi\)
0.377757 + 0.925905i \(0.376696\pi\)
\(500\) −4.02733 21.9950i −0.180108 0.983647i
\(501\) 0 0
\(502\) −1.14171 + 4.74137i −0.0509572 + 0.211618i
\(503\) 16.0547i 0.715844i −0.933751 0.357922i \(-0.883485\pi\)
0.933751 0.357922i \(-0.116515\pi\)
\(504\) 0 0
\(505\) 5.43845 4.98074i 0.242008 0.221640i
\(506\) −10.3000 2.48023i −0.457893 0.110260i
\(507\) 0 0
\(508\) 8.33783 + 4.26263i 0.369931 + 0.189124i
\(509\) 3.29801 0.146182 0.0730909 0.997325i \(-0.476714\pi\)
0.0730909 + 0.997325i \(0.476714\pi\)
\(510\) 0 0
\(511\) 5.23827i 0.231728i
\(512\) 11.9407 19.2203i 0.527707 0.849426i
\(513\) 0 0
\(514\) −21.4924 5.17534i −0.947990 0.228274i
\(515\) −29.7195 + 27.2183i −1.30960 + 1.19938i
\(516\) 0 0
\(517\) 23.7565 1.04481
\(518\) −9.79366 2.35829i −0.430309 0.103618i
\(519\) 0 0
\(520\) −21.0820 + 0.687485i −0.924508 + 0.0301482i
\(521\) 2.65433i 0.116288i −0.998308 0.0581441i \(-0.981482\pi\)
0.998308 0.0581441i \(-0.0185183\pi\)
\(522\) 0 0
\(523\) 4.36758i 0.190981i 0.995430 + 0.0954905i \(0.0304420\pi\)
−0.995430 + 0.0954905i \(0.969558\pi\)
\(524\) 0.564503 1.10418i 0.0246604 0.0482365i
\(525\) 0 0
\(526\) −4.87689 + 20.2530i −0.212643 + 0.883074i
\(527\) 12.8255i 0.558686i
\(528\) 0 0
\(529\) 11.4924 0.499671
\(530\) 7.78773 + 14.0809i 0.338277 + 0.611635i
\(531\) 0 0
\(532\) −5.20798 2.66253i −0.225795 0.115435i
\(533\) 19.4470i 0.842343i
\(534\) 0 0
\(535\) −18.1379 + 16.6114i −0.784172 + 0.718174i
\(536\) 22.3631 26.0759i 0.965939 1.12631i
\(537\) 0 0
\(538\) 20.6843 + 4.98074i 0.891763 + 0.214735i
\(539\) 13.5221i 0.582437i
\(540\) 0 0
\(541\) 9.90237i 0.425736i 0.977081 + 0.212868i \(0.0682804\pi\)
−0.977081 + 0.212868i \(0.931720\pi\)
\(542\) −3.42687 + 14.2313i −0.147197 + 0.611286i
\(543\) 0 0
\(544\) 3.31534 + 8.08156i 0.142144 + 0.346494i
\(545\) 18.0431 + 19.7012i 0.772883 + 0.843908i
\(546\) 0 0
\(547\) 16.5129i 0.706039i −0.935616 0.353019i \(-0.885155\pi\)
0.935616 0.353019i \(-0.114845\pi\)
\(548\) −2.74983 1.40582i −0.117467 0.0600537i
\(549\) 0 0
\(550\) 14.8025 + 4.97288i 0.631182 + 0.212044i
\(551\) −26.3841 −1.12400
\(552\) 0 0
\(553\) 0.957477i 0.0407161i
\(554\) 32.0986 + 7.72929i 1.36374 + 0.328386i
\(555\) 0 0
\(556\) −21.3693 10.9248i −0.906261 0.463317i
\(557\) 32.6443i 1.38318i −0.722289 0.691591i \(-0.756910\pi\)
0.722289 0.691591i \(-0.243090\pi\)
\(558\) 0 0
\(559\) 25.9396i 1.09713i
\(560\) 8.20248 + 1.69435i 0.346618 + 0.0715995i
\(561\) 0 0
\(562\) −0.994066 + 4.12821i −0.0419321 + 0.174138i
\(563\) −14.0877 −0.593724 −0.296862 0.954920i \(-0.595940\pi\)
−0.296862 + 0.954920i \(0.595940\pi\)
\(564\) 0 0
\(565\) −20.6843 + 18.9435i −0.870195 + 0.796958i
\(566\) −7.72503 + 32.0810i −0.324707 + 1.34846i
\(567\) 0 0
\(568\) 25.2188 + 21.6280i 1.05816 + 0.907491i
\(569\) 30.0467i 1.25962i −0.776748 0.629811i \(-0.783132\pi\)
0.776748 0.629811i \(-0.216868\pi\)
\(570\) 0 0
\(571\) 33.8617 1.41707 0.708535 0.705676i \(-0.249356\pi\)
0.708535 + 0.705676i \(0.249356\pi\)
\(572\) 6.70531 13.1158i 0.280363 0.548398i
\(573\) 0 0
\(574\) −1.80776 + 7.50738i −0.0754546 + 0.313352i
\(575\) 16.8961 + 1.48734i 0.704615 + 0.0620262i
\(576\) 0 0
\(577\) 7.77769i 0.323789i 0.986808 + 0.161895i \(0.0517605\pi\)
−0.986808 + 0.161895i \(0.948240\pi\)
\(578\) 20.0951 + 4.83886i 0.835846 + 0.201270i
\(579\) 0 0
\(580\) 36.4231 10.0372i 1.51239 0.416771i
\(581\) 13.1921 0.547299
\(582\) 0 0
\(583\) −11.2371 −0.465394
\(584\) 10.3000 12.0101i 0.426219 0.496981i
\(585\) 0 0
\(586\) 9.87689 41.0173i 0.408011 1.69441i
\(587\) 10.9993 0.453990 0.226995 0.973896i \(-0.427110\pi\)
0.226995 + 0.973896i \(0.427110\pi\)
\(588\) 0 0
\(589\) 25.9396i 1.06882i
\(590\) −16.3664 29.5919i −0.673795 1.21828i
\(591\) 0 0
\(592\) 17.8174 + 24.6643i 0.732290 + 1.01370i
\(593\) −43.8071 −1.79894 −0.899472 0.436978i \(-0.856049\pi\)
−0.899472 + 0.436978i \(0.856049\pi\)
\(594\) 0 0
\(595\) −2.38447 + 2.18379i −0.0977538 + 0.0895267i
\(596\) 3.29801 + 1.68608i 0.135092 + 0.0690644i
\(597\) 0 0
\(598\) 3.74571 15.5554i 0.153173 0.636107i
\(599\) −45.5382 −1.86064 −0.930320 0.366749i \(-0.880471\pi\)
−0.930320 + 0.366749i \(0.880471\pi\)
\(600\) 0 0
\(601\) −23.3693 −0.953254 −0.476627 0.879106i \(-0.658141\pi\)
−0.476627 + 0.879106i \(0.658141\pi\)
\(602\) −2.41131 + 10.0138i −0.0982776 + 0.408133i
\(603\) 0 0
\(604\) −16.0540 + 31.4020i −0.653227 + 1.27773i
\(605\) 10.0970 9.24726i 0.410503 0.375955i
\(606\) 0 0
\(607\) −9.71010 −0.394121 −0.197060 0.980391i \(-0.563140\pi\)
−0.197060 + 0.980391i \(0.563140\pi\)
\(608\) 6.70531 + 16.3450i 0.271936 + 0.662879i
\(609\) 0 0
\(610\) 0 0
\(611\) 35.8776i 1.45145i
\(612\) 0 0
\(613\) 23.8718 0.964172 0.482086 0.876124i \(-0.339879\pi\)
0.482086 + 0.876124i \(0.339879\pi\)
\(614\) −1.44600 + 6.00505i −0.0583560 + 0.242344i
\(615\) 0 0
\(616\) −3.80776 + 4.43994i −0.153419 + 0.178890i
\(617\) −15.6318 −0.629314 −0.314657 0.949205i \(-0.601889\pi\)
−0.314657 + 0.949205i \(0.601889\pi\)
\(618\) 0 0
\(619\) 18.7386 0.753169 0.376585 0.926382i \(-0.377098\pi\)
0.376585 + 0.926382i \(0.377098\pi\)
\(620\) −9.86809 35.8095i −0.396312 1.43814i
\(621\) 0 0
\(622\) −14.1617 3.41011i −0.567831 0.136733i
\(623\) 12.2448i 0.490578i
\(624\) 0 0
\(625\) −24.6155 4.36758i −0.984621 0.174703i
\(626\) 10.6170 44.0911i 0.424342 1.76223i
\(627\) 0 0
\(628\) −5.00270 2.55758i −0.199629 0.102059i
\(629\) −11.7460 −0.468346
\(630\) 0 0
\(631\) 17.6339i 0.701995i 0.936376 + 0.350997i \(0.114157\pi\)
−0.936376 + 0.350997i \(0.885843\pi\)
\(632\) −1.88269 + 2.19526i −0.0748895 + 0.0873229i
\(633\) 0 0
\(634\) 8.12311 33.7341i 0.322610 1.33975i
\(635\) 7.72087 7.07107i 0.306393 0.280607i
\(636\) 0 0
\(637\) −20.4214 −0.809124
\(638\) −6.17669 + 25.6509i −0.244538 + 1.01553i
\(639\) 0 0
\(640\) −15.4747 20.0133i −0.611691 0.791097i
\(641\) 7.07107i 0.279290i −0.990202 0.139645i \(-0.955404\pi\)
0.990202 0.139645i \(-0.0445962\pi\)
\(642\) 0 0
\(643\) 8.73516i 0.344481i 0.985055 + 0.172241i \(0.0551007\pi\)
−0.985055 + 0.172241i \(0.944899\pi\)
\(644\) −2.89201 + 5.65685i −0.113961 + 0.222911i
\(645\) 0 0
\(646\) −6.63068 1.59666i −0.260881 0.0628196i
\(647\) 1.32431i 0.0520639i −0.999661 0.0260319i \(-0.991713\pi\)
0.999661 0.0260319i \(-0.00828716\pi\)
\(648\) 0 0
\(649\) 23.6155 0.926991
\(650\) −7.51016 + 22.3551i −0.294573 + 0.876841i
\(651\) 0 0
\(652\) 14.1617 27.7006i 0.554614 1.08484i
\(653\) 15.8459i 0.620098i −0.950721 0.310049i \(-0.899654\pi\)
0.950721 0.310049i \(-0.100346\pi\)
\(654\) 0 0
\(655\) −0.936426 1.02248i −0.0365892 0.0399516i
\(656\) 18.9066 13.6580i 0.738178 0.533256i
\(657\) 0 0
\(658\) 3.33513 13.8503i 0.130017 0.539942i
\(659\) 33.3211i 1.29800i −0.760786 0.649002i \(-0.775187\pi\)
0.760786 0.649002i \(-0.224813\pi\)
\(660\) 0 0
\(661\) 44.5960i 1.73458i 0.497800 + 0.867292i \(0.334141\pi\)
−0.497800 + 0.867292i \(0.665859\pi\)
\(662\) 1.88269 + 0.453349i 0.0731729 + 0.0176199i
\(663\) 0 0
\(664\) −30.2462 25.9396i −1.17378 1.00665i
\(665\) −4.82262 + 4.41674i −0.187013 + 0.171274i
\(666\) 0 0
\(667\) 28.6581i 1.10965i
\(668\) 8.58800 16.7984i 0.332280 0.649949i
\(669\) 0 0
\(670\) −18.5881 33.6089i −0.718121 1.29843i
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) −9.89404 + 41.0885i −0.381104 + 1.58267i
\(675\) 0 0
\(676\) −3.34233 1.70873i −0.128551 0.0657205i
\(677\) 5.25145i 0.201830i −0.994895 0.100915i \(-0.967823\pi\)
0.994895 0.100915i \(-0.0321770\pi\)
\(678\) 0 0
\(679\) 2.04496i 0.0784783i
\(680\) 9.76102 0.318307i 0.374318 0.0122065i
\(681\) 0 0
\(682\) 25.2188 + 6.07263i 0.965677 + 0.232533i
\(683\) 20.2644 0.775394 0.387697 0.921787i \(-0.373271\pi\)
0.387697 + 0.921787i \(0.373271\pi\)
\(684\) 0 0
\(685\) −2.54635 + 2.33205i −0.0972911 + 0.0891030i
\(686\) 16.8961 + 4.06854i 0.645095 + 0.155338i
\(687\) 0 0
\(688\) 25.2188 18.2179i 0.961457 0.694551i
\(689\) 16.9706i 0.646527i
\(690\) 0 0
\(691\) −23.1231 −0.879644 −0.439822 0.898085i \(-0.644959\pi\)
−0.439822 + 0.898085i \(0.644959\pi\)
\(692\) −1.54417 + 3.02045i −0.0587007 + 0.114820i
\(693\) 0 0
\(694\) −19.3693 4.66410i −0.735249 0.177047i
\(695\) −19.7881 + 18.1227i −0.750605 + 0.687433i
\(696\) 0 0
\(697\) 9.00400i 0.341051i
\(698\) −10.9993 + 45.6786i −0.416330 + 1.72896i
\(699\) 0 0
\(700\) 4.97735 7.93192i 0.188126 0.299799i
\(701\) 20.1941 0.762720 0.381360 0.924427i \(-0.375456\pi\)
0.381360 + 0.924427i \(0.375456\pi\)
\(702\) 0 0
\(703\) −23.7565 −0.895993
\(704\) 17.4606 2.69250i 0.658070 0.101477i
\(705\) 0 0
\(706\) −10.6155 2.55620i −0.399521 0.0962038i
\(707\) 3.08835 0.116149
\(708\) 0 0
\(709\) 30.6037i 1.14935i −0.818383 0.574673i \(-0.805129\pi\)
0.818383 0.574673i \(-0.194871\pi\)
\(710\) 32.5042 17.9771i 1.21986 0.674668i
\(711\) 0 0
\(712\) 24.0771 28.0744i 0.902326 1.05213i
\(713\) 28.1753 1.05517
\(714\) 0 0
\(715\) −11.1231 12.1453i −0.415981 0.454207i
\(716\) −7.47753 + 14.6263i −0.279448 + 0.546609i
\(717\) 0 0
\(718\) 1.98813 + 0.478739i 0.0741964 + 0.0178664i
\(719\) −32.3461 −1.20631 −0.603154 0.797625i \(-0.706089\pi\)
−0.603154 + 0.797625i \(0.706089\pi\)
\(720\) 0 0
\(721\) −16.8769 −0.628528
\(722\) 12.7127 + 3.06121i 0.473119 + 0.113926i
\(723\) 0 0
\(724\) −4.24621 + 8.30571i −0.157809 + 0.308679i
\(725\) 3.70402 42.0775i 0.137564 1.56272i
\(726\) 0 0
\(727\) −9.47954 −0.351577 −0.175788 0.984428i \(-0.556247\pi\)
−0.175788 + 0.984428i \(0.556247\pi\)
\(728\) −6.70531 5.75058i −0.248515 0.213131i
\(729\) 0 0
\(730\) −8.56135 15.4797i −0.316870 0.572928i
\(731\) 12.0101i 0.444210i
\(732\) 0 0
\(733\) 19.6002 0.723951 0.361975 0.932188i \(-0.382102\pi\)
0.361975 + 0.932188i \(0.382102\pi\)
\(734\) −44.5677 10.7318i −1.64502 0.396119i
\(735\) 0 0
\(736\) 17.7538 7.28323i 0.654413 0.268463i
\(737\) 26.8212 0.987973
\(738\) 0 0
\(739\) 35.6155 1.31014 0.655069 0.755569i \(-0.272639\pi\)
0.655069 + 0.755569i \(0.272639\pi\)
\(740\) 32.7957 9.03758i 1.20559 0.332228i
\(741\) 0 0
\(742\) −1.57756 + 6.55137i −0.0579140 + 0.240508i
\(743\) 10.0138i 0.367371i 0.982985 + 0.183686i \(0.0588028\pi\)
−0.982985 + 0.183686i \(0.941197\pi\)
\(744\) 0 0
\(745\) 3.05398 2.79695i 0.111889 0.102472i
\(746\) −13.0336 3.13846i −0.477192 0.114907i
\(747\) 0 0
\(748\) −3.10457 + 6.07263i −0.113514 + 0.222038i
\(749\) −10.3000 −0.376355
\(750\) 0 0
\(751\) 41.5286i 1.51540i −0.652604 0.757699i \(-0.726323\pi\)
0.652604 0.757699i \(-0.273677\pi\)
\(752\) −34.8806 + 25.1976i −1.27197 + 0.918861i
\(753\) 0 0
\(754\) −38.7386 9.32819i −1.41078 0.339713i
\(755\) 26.6311 + 29.0784i 0.969207 + 1.05827i
\(756\) 0 0
\(757\) 3.33513 0.121217 0.0606087 0.998162i \(-0.480696\pi\)
0.0606087 + 0.998162i \(0.480696\pi\)
\(758\) 22.6757 + 5.46026i 0.823617 + 0.198325i
\(759\) 0 0
\(760\) 19.7418 0.643779i 0.716109 0.0233523i
\(761\) 49.3019i 1.78719i 0.448870 + 0.893597i \(0.351827\pi\)
−0.448870 + 0.893597i \(0.648173\pi\)
\(762\) 0 0
\(763\) 11.1878i 0.405025i
\(764\) 23.4921 + 12.0101i 0.849914 + 0.434510i
\(765\) 0 0
\(766\) 3.31534 13.7681i 0.119788 0.497463i
\(767\) 35.6647i 1.28778i
\(768\) 0 0
\(769\) 25.6155 0.923720 0.461860 0.886953i \(-0.347182\pi\)
0.461860 + 0.886953i \(0.347182\pi\)
\(770\) 3.16499 + 5.72259i 0.114058 + 0.206228i
\(771\) 0 0
\(772\) −21.2425 + 41.5510i −0.764535 + 1.49545i
\(773\) 2.27678i 0.0818901i 0.999161 + 0.0409450i \(0.0130369\pi\)
−0.999161 + 0.0409450i \(0.986963\pi\)
\(774\) 0 0
\(775\) −41.3686 3.64162i −1.48600 0.130811i
\(776\) 4.02102 4.68860i 0.144346 0.168311i
\(777\) 0 0
\(778\) −13.6035 3.27569i −0.487707 0.117439i
\(779\) 18.2107i 0.652465i
\(780\) 0 0
\(781\) 25.9396i 0.928192i
\(782\) −1.73427 + 7.20217i −0.0620174 + 0.257549i
\(783\) 0 0
\(784\) −14.3423 19.8539i −0.512226 0.709067i
\(785\) −4.63252 + 4.24264i −0.165342 + 0.151426i
\(786\) 0 0
\(787\) 19.9230i 0.710177i 0.934833 + 0.355088i \(0.115549\pi\)
−0.934833 + 0.355088i \(0.884451\pi\)
\(788\) 4.48410 8.77102i 0.159739 0.312455i
\(789\) 0 0
\(790\) 1.56489 + 2.82945i 0.0556761 + 0.100667i
\(791\) −11.7460 −0.417641
\(792\) 0 0
\(793\) 0 0
\(794\) 14.1626 + 3.41032i 0.502611 + 0.121028i
\(795\) 0 0
\(796\) −16.0540 + 31.4020i −0.569018 + 1.11302i
\(797\) 15.6829i 0.555516i 0.960651 + 0.277758i \(0.0895913\pi\)
−0.960651 + 0.277758i \(0.910409\pi\)
\(798\) 0 0
\(799\) 16.6114i 0.587670i
\(800\) −27.0085 + 8.39900i −0.954893 + 0.296950i
\(801\) 0 0
\(802\) −0.172919 + 0.718108i −0.00610598 + 0.0253573i
\(803\) 12.3534 0.435942
\(804\) 0 0
\(805\) 4.79741 + 5.23827i 0.169087 + 0.184625i
\(806\) −9.17104 + 38.0860i −0.323036 + 1.34152i
\(807\) 0 0
\(808\) −7.08084 6.07263i −0.249103 0.213635i
\(809\) 20.6695i 0.726700i −0.931653 0.363350i \(-0.881633\pi\)
0.931653 0.363350i \(-0.118367\pi\)
\(810\) 0 0
\(811\) −49.4773 −1.73738 −0.868691 0.495354i \(-0.835038\pi\)
−0.868691 + 0.495354i \(0.835038\pi\)
\(812\) 14.0877 + 7.20217i 0.494380 + 0.252747i
\(813\) 0 0
\(814\) −5.56155 + 23.0963i −0.194932 + 0.809526i
\(815\) −23.4921 25.6509i −0.822892 0.898513i
\(816\) 0 0
\(817\) 24.2905i 0.849818i
\(818\) −4.29400 1.03399i −0.150136 0.0361525i
\(819\) 0 0
\(820\) −6.92781 25.1397i −0.241929 0.877917i
\(821\) 12.1521 0.424110 0.212055 0.977258i \(-0.431984\pi\)
0.212055 + 0.977258i \(0.431984\pi\)
\(822\) 0 0
\(823\) −28.6692 −0.999345 −0.499673 0.866214i \(-0.666546\pi\)
−0.499673 + 0.866214i \(0.666546\pi\)
\(824\) 38.6947 + 33.1851i 1.34799 + 1.15606i
\(825\) 0 0
\(826\) 3.31534 13.7681i 0.115355 0.479055i
\(827\) −39.1746 −1.36224 −0.681118 0.732174i \(-0.738506\pi\)
−0.681118 + 0.732174i \(0.738506\pi\)
\(828\) 0 0
\(829\) 4.66410i 0.161991i 0.996714 + 0.0809954i \(0.0258099\pi\)
−0.996714 + 0.0809954i \(0.974190\pi\)
\(830\) −38.9840 + 21.5609i −1.35315 + 0.748389i
\(831\) 0 0
\(832\) 4.06627 + 26.3694i 0.140973 + 0.914194i
\(833\) 9.45514 0.327601
\(834\) 0 0
\(835\) −14.2462 15.5554i −0.493010 0.538316i
\(836\) −6.27903 + 12.2820i −0.217165 + 0.424781i
\(837\) 0 0
\(838\) −10.7365 + 44.5873i −0.370887 + 1.54024i
\(839\) −24.9381 −0.860959 −0.430479 0.902600i \(-0.641656\pi\)
−0.430479 + 0.902600i \(0.641656\pi\)
\(840\) 0 0
\(841\) 42.3693 1.46101
\(842\) −10.1322 + 42.0775i −0.349178 + 1.45009i
\(843\) 0 0
\(844\) 7.12311 + 3.64162i 0.245187 + 0.125350i
\(845\) −3.09501 + 2.83453i −0.106472 + 0.0975108i
\(846\) 0 0
\(847\) 5.73384 0.197017
\(848\) 16.4990 11.9188i 0.566577 0.409292i
\(849\) 0 0
\(850\) 3.47722 10.3505i 0.119268 0.355019i
\(851\) 25.8040i 0.884551i
\(852\) 0 0
\(853\) −45.5249 −1.55874 −0.779371 0.626563i \(-0.784461\pi\)
−0.779371 + 0.626563i \(0.784461\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 23.6155 + 20.2530i 0.807162 + 0.692235i
\(857\) −40.7188 −1.39093 −0.695464 0.718561i \(-0.744801\pi\)
−0.695464 + 0.718561i \(0.744801\pi\)
\(858\) 0 0
\(859\) −33.7538 −1.15166 −0.575832 0.817568i \(-0.695322\pi\)
−0.575832 + 0.817568i \(0.695322\pi\)
\(860\) −9.24074 33.5329i −0.315107 1.14346i
\(861\) 0 0
\(862\) −1.98813 0.478739i −0.0677160 0.0163059i
\(863\) 45.6786i 1.55492i 0.628935 + 0.777458i \(0.283491\pi\)
−0.628935 + 0.777458i \(0.716509\pi\)
\(864\) 0 0
\(865\) 2.56155 + 2.79695i 0.0870954 + 0.0950991i
\(866\) 5.15002 21.3873i 0.175005 0.726770i
\(867\) 0 0
\(868\) 7.08084 13.8503i 0.240339 0.470111i
\(869\) −2.25801 −0.0765978
\(870\) 0 0
\(871\) 40.5061i 1.37250i
\(872\) 21.9986 25.6509i 0.744967 0.868650i
\(873\) 0 0
\(874\) −3.50758 + 14.5665i −0.118646 + 0.492718i
\(875\) −6.36679 8.31118i −0.215237 0.280969i
\(876\) 0 0
\(877\) 46.5766 1.57278 0.786389 0.617731i \(-0.211948\pi\)
0.786389 + 0.617731i \(0.211948\pi\)
\(878\) 8.92652 37.0706i 0.301256 1.25107i
\(879\) 0 0
\(880\) 3.99579 19.3439i 0.134698 0.652082i
\(881\) 5.83095i 0.196450i 0.995164 + 0.0982249i \(0.0313164\pi\)
−0.995164 + 0.0982249i \(0.968684\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) −9.17104 4.68860i −0.308455 0.157695i
\(885\) 0 0
\(886\) −34.4924 8.30571i −1.15880 0.279036i
\(887\) 16.2177i 0.544538i 0.962221 + 0.272269i \(0.0877741\pi\)
−0.962221 + 0.272269i \(0.912226\pi\)
\(888\) 0 0
\(889\) 4.38447 0.147050
\(890\) −20.0127 36.1848i −0.670828 1.21292i
\(891\) 0 0
\(892\) 39.1752 + 20.0279i 1.31168 + 0.670584i
\(893\) 33.5968i 1.12427i
\(894\) 0 0
\(895\) 12.4041 + 13.5440i 0.414623 + 0.452725i
\(896\) 0.881502 10.5577i 0.0294489 0.352709i
\(897\) 0 0
\(898\) −3.27749 + 13.6110i −0.109371 + 0.454203i
\(899\) 70.1670i 2.34020i
\(900\) 0 0
\(901\) 7.85741i 0.261768i
\(902\) 17.7046 + 4.26324i 0.589499 + 0.141950i
\(903\) 0 0
\(904\) 26.9309 + 23.0963i 0.895707 + 0.768172i
\(905\) 7.04383 + 7.69113i 0.234145 + 0.255662i
\(906\) 0 0
\(907\) 16.5129i 0.548300i 0.961687 + 0.274150i \(0.0883965\pi\)
−0.961687 + 0.274150i \(0.911603\pi\)
\(908\) −5.49966 2.81164i −0.182512 0.0933077i
\(909\) 0 0
\(910\) −8.64239 + 4.77985i −0.286492 + 0.158451i
\(911\) 36.6842 1.21540 0.607700 0.794167i \(-0.292092\pi\)
0.607700 + 0.794167i \(0.292092\pi\)
\(912\) 0 0
\(913\) 31.1107i 1.02962i
\(914\) −4.42702 + 18.3848i −0.146433 + 0.608114i
\(915\) 0 0
\(916\) −2.38447 + 4.66410i −0.0787852 + 0.154106i
\(917\) 0.580639i 0.0191744i
\(918\) 0 0
\(919\) 30.1554i 0.994735i −0.867540 0.497368i \(-0.834300\pi\)
0.867540 0.497368i \(-0.165700\pi\)
\(920\) −0.699266 21.4433i −0.0230541 0.706964i
\(921\) 0 0
\(922\) −2.54635 0.613157i −0.0838597 0.0201933i
\(923\) −39.1746 −1.28945
\(924\) 0 0
\(925\) 3.33513 37.8869i 0.109658 1.24571i
\(926\) −18.1836 4.37857i −0.597549 0.143889i
\(927\) 0 0
\(928\) −18.1379 44.2135i −0.595407 1.45138i
\(929\) 3.00252i 0.0985096i 0.998786 + 0.0492548i \(0.0156846\pi\)
−0.998786 + 0.0492548i \(0.984315\pi\)
\(930\) 0 0
\(931\) 19.1231 0.626734
\(932\) −36.4248 18.6218i −1.19313 0.609978i
\(933\) 0 0
\(934\) 26.0000 + 6.26075i 0.850746 + 0.204858i
\(935\) 5.15002 + 5.62329i 0.168424 + 0.183901i
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 3.76539 15.6371i 0.122944 0.510570i
\(939\) 0 0
\(940\) 12.7811 + 46.3801i 0.416872 + 1.51275i
\(941\) −3.29801 −0.107512 −0.0537561 0.998554i \(-0.517119\pi\)
−0.0537561 + 0.998554i \(0.517119\pi\)
\(942\) 0 0
\(943\) 19.7802 0.644133
\(944\) −34.6736 + 25.0481i −1.12853 + 0.815245i
\(945\) 0 0
\(946\) 23.6155 + 5.68658i 0.767807 + 0.184887i
\(947\) 32.9979 1.07229 0.536144 0.844126i \(-0.319880\pi\)
0.536144 + 0.844126i \(0.319880\pi\)
\(948\) 0 0
\(949\) 18.6564i 0.605612i
\(950\) 7.03272 20.9340i 0.228171 0.679187i
\(951\) 0 0
\(952\) 3.10457 + 2.66253i 0.100620 + 0.0862931i
\(953\) 12.5435 0.406323 0.203162 0.979145i \(-0.434878\pi\)
0.203162 + 0.979145i \(0.434878\pi\)
\(954\) 0 0
\(955\) 21.7538 19.9230i 0.703936 0.644692i
\(956\) 41.8342 + 21.3873i 1.35301 + 0.691715i
\(957\) 0 0
\(958\) −20.1261 4.84632i −0.650244 0.156578i
\(959\) −1.44600 −0.0466939
\(960\) 0 0
\(961\) −37.9848 −1.22532
\(962\) −34.8806 8.39919i −1.12460 0.270801i
\(963\) 0 0
\(964\) −7.12311 3.64162i −0.229420 0.117289i
\(965\) 35.2381 + 38.4764i 1.13436 + 1.23860i
\(966\) 0 0
\(967\) 15.0981 0.485522 0.242761 0.970086i \(-0.421947\pi\)
0.242761 + 0.970086i \(0.421947\pi\)
\(968\) −13.1463 11.2745i −0.422538 0.362375i
\(969\) 0 0
\(970\) −3.34225 6.04308i −0.107313 0.194032i
\(971\) 19.8753i 0.637829i −0.947783 0.318915i \(-0.896682\pi\)
0.947783 0.318915i \(-0.103318\pi\)
\(972\) 0 0
\(973\) −11.2371 −0.360245
\(974\) 40.5467 + 9.76356i 1.29920 + 0.312845i
\(975\) 0 0
\(976\) 0 0
\(977\) −37.6305 −1.20390 −0.601952 0.798532i \(-0.705610\pi\)
−0.601952 + 0.798532i \(0.705610\pi\)
\(978\) 0 0
\(979\) 28.8769 0.922910
\(980\) −26.3993 + 7.27492i −0.843295 + 0.232389i
\(981\) 0 0
\(982\) −5.41327 + 22.4805i −0.172744 + 0.717383i
\(983\) 53.0438i 1.69183i −0.533315 0.845917i \(-0.679054\pi\)
0.533315 0.845917i \(-0.320946\pi\)
\(984\) 0 0
\(985\) −7.43845 8.12201i −0.237009 0.258789i
\(986\) 17.9361 + 4.31897i 0.571201 + 0.137544i
\(987\) 0 0
\(988\) −18.5485 9.48274i −0.590107 0.301686i
\(989\) 26.3841 0.838966
\(990\) 0 0
\(991\) 17.6339i 0.560159i −0.959977 0.280080i \(-0.909639\pi\)
0.959977 0.280080i \(-0.0903609\pi\)
\(992\) −43.4686 + 17.8324i −1.38013 + 0.566178i
\(993\) 0 0
\(994\) 15.1231 + 3.64162i 0.479676 + 0.115505i
\(995\) 26.6311 + 29.0784i 0.844264 + 0.921848i
\(996\) 0 0
\(997\) 25.5141 0.808039 0.404019 0.914750i \(-0.367613\pi\)
0.404019 + 0.914750i \(0.367613\pi\)
\(998\) −23.2043 5.58755i −0.734519 0.176871i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 360.2.m.c.179.2 yes 16
3.2 odd 2 inner 360.2.m.c.179.15 yes 16
4.3 odd 2 1440.2.m.c.719.9 16
5.2 odd 4 1800.2.b.g.251.10 16
5.3 odd 4 1800.2.b.g.251.7 16
5.4 even 2 inner 360.2.m.c.179.16 yes 16
8.3 odd 2 inner 360.2.m.c.179.3 yes 16
8.5 even 2 1440.2.m.c.719.8 16
12.11 even 2 1440.2.m.c.719.7 16
15.2 even 4 1800.2.b.g.251.8 16
15.8 even 4 1800.2.b.g.251.9 16
15.14 odd 2 inner 360.2.m.c.179.1 16
20.3 even 4 7200.2.b.i.4751.12 16
20.7 even 4 7200.2.b.i.4751.7 16
20.19 odd 2 1440.2.m.c.719.12 16
24.5 odd 2 1440.2.m.c.719.10 16
24.11 even 2 inner 360.2.m.c.179.14 yes 16
40.3 even 4 1800.2.b.g.251.12 16
40.13 odd 4 7200.2.b.i.4751.8 16
40.19 odd 2 inner 360.2.m.c.179.13 yes 16
40.27 even 4 1800.2.b.g.251.5 16
40.29 even 2 1440.2.m.c.719.5 16
40.37 odd 4 7200.2.b.i.4751.11 16
60.23 odd 4 7200.2.b.i.4751.9 16
60.47 odd 4 7200.2.b.i.4751.6 16
60.59 even 2 1440.2.m.c.719.6 16
120.29 odd 2 1440.2.m.c.719.11 16
120.53 even 4 7200.2.b.i.4751.5 16
120.59 even 2 inner 360.2.m.c.179.4 yes 16
120.77 even 4 7200.2.b.i.4751.10 16
120.83 odd 4 1800.2.b.g.251.6 16
120.107 odd 4 1800.2.b.g.251.11 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.m.c.179.1 16 15.14 odd 2 inner
360.2.m.c.179.2 yes 16 1.1 even 1 trivial
360.2.m.c.179.3 yes 16 8.3 odd 2 inner
360.2.m.c.179.4 yes 16 120.59 even 2 inner
360.2.m.c.179.13 yes 16 40.19 odd 2 inner
360.2.m.c.179.14 yes 16 24.11 even 2 inner
360.2.m.c.179.15 yes 16 3.2 odd 2 inner
360.2.m.c.179.16 yes 16 5.4 even 2 inner
1440.2.m.c.719.5 16 40.29 even 2
1440.2.m.c.719.6 16 60.59 even 2
1440.2.m.c.719.7 16 12.11 even 2
1440.2.m.c.719.8 16 8.5 even 2
1440.2.m.c.719.9 16 4.3 odd 2
1440.2.m.c.719.10 16 24.5 odd 2
1440.2.m.c.719.11 16 120.29 odd 2
1440.2.m.c.719.12 16 20.19 odd 2
1800.2.b.g.251.5 16 40.27 even 4
1800.2.b.g.251.6 16 120.83 odd 4
1800.2.b.g.251.7 16 5.3 odd 4
1800.2.b.g.251.8 16 15.2 even 4
1800.2.b.g.251.9 16 15.8 even 4
1800.2.b.g.251.10 16 5.2 odd 4
1800.2.b.g.251.11 16 120.107 odd 4
1800.2.b.g.251.12 16 40.3 even 4
7200.2.b.i.4751.5 16 120.53 even 4
7200.2.b.i.4751.6 16 60.47 odd 4
7200.2.b.i.4751.7 16 20.7 even 4
7200.2.b.i.4751.8 16 40.13 odd 4
7200.2.b.i.4751.9 16 60.23 odd 4
7200.2.b.i.4751.10 16 120.77 even 4
7200.2.b.i.4751.11 16 40.37 odd 4
7200.2.b.i.4751.12 16 20.3 even 4