Properties

Label 7200.2.b.i.4751.11
Level $7200$
Weight $2$
Character 7200.4751
Analytic conductor $57.492$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7200,2,Mod(4751,7200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7200.4751");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7200 = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7200.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.4922894553\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6x^{14} + 28x^{12} + 16x^{10} - 40x^{8} + 610x^{6} + 1625x^{4} - 524x^{2} + 1444 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{53}]\)
Coefficient ring index: \( 2^{24} \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4751.11
Root \(-1.61596 - 1.02509i\) of defining polynomial
Character \(\chi\) \(=\) 7200.4751
Dual form 7200.2.b.i.4751.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.936426i q^{7} +2.20837i q^{11} +3.33513i q^{13} -1.54417i q^{17} -3.12311 q^{19} +3.39228 q^{23} +8.44804 q^{29} -8.30571i q^{31} -7.60669i q^{37} -5.83095i q^{41} +7.77769 q^{43} -10.7575 q^{47} +6.12311 q^{49} +5.08842 q^{53} +10.6937i q^{59} +12.1453 q^{67} -11.7460 q^{71} +5.59390 q^{73} -2.06798 q^{77} +1.02248i q^{79} +14.0877i q^{83} -13.0761i q^{89} -3.12311 q^{91} -2.18379 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{19} + 32 q^{49} + 16 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7200\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(6401\) \(6751\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.936426i 0.353936i 0.984217 + 0.176968i \(0.0566289\pi\)
−0.984217 + 0.176968i \(0.943371\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.20837i 0.665848i 0.942954 + 0.332924i \(0.108035\pi\)
−0.942954 + 0.332924i \(0.891965\pi\)
\(12\) 0 0
\(13\) 3.33513i 0.924999i 0.886619 + 0.462500i \(0.153047\pi\)
−0.886619 + 0.462500i \(0.846953\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 1.54417i − 0.374517i −0.982311 0.187259i \(-0.940040\pi\)
0.982311 0.187259i \(-0.0599602\pi\)
\(18\) 0 0
\(19\) −3.12311 −0.716490 −0.358245 0.933628i \(-0.616625\pi\)
−0.358245 + 0.933628i \(0.616625\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.39228 0.707340 0.353670 0.935370i \(-0.384934\pi\)
0.353670 + 0.935370i \(0.384934\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8.44804 1.56876 0.784380 0.620280i \(-0.212981\pi\)
0.784380 + 0.620280i \(0.212981\pi\)
\(30\) 0 0
\(31\) − 8.30571i − 1.49175i −0.666086 0.745875i \(-0.732032\pi\)
0.666086 0.745875i \(-0.267968\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 7.60669i − 1.25053i −0.780412 0.625266i \(-0.784990\pi\)
0.780412 0.625266i \(-0.215010\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 5.83095i − 0.910642i −0.890327 0.455321i \(-0.849525\pi\)
0.890327 0.455321i \(-0.150475\pi\)
\(42\) 0 0
\(43\) 7.77769 1.18609 0.593043 0.805171i \(-0.297926\pi\)
0.593043 + 0.805171i \(0.297926\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −10.7575 −1.56914 −0.784570 0.620040i \(-0.787116\pi\)
−0.784570 + 0.620040i \(0.787116\pi\)
\(48\) 0 0
\(49\) 6.12311 0.874729
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.08842 0.698949 0.349474 0.936946i \(-0.386360\pi\)
0.349474 + 0.936946i \(0.386360\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.6937i 1.39219i 0.717947 + 0.696097i \(0.245082\pi\)
−0.717947 + 0.696097i \(0.754918\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 12.1453 1.48378 0.741890 0.670521i \(-0.233929\pi\)
0.741890 + 0.670521i \(0.233929\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −11.7460 −1.39400 −0.697000 0.717071i \(-0.745482\pi\)
−0.697000 + 0.717071i \(0.745482\pi\)
\(72\) 0 0
\(73\) 5.59390 0.654716 0.327358 0.944900i \(-0.393842\pi\)
0.327358 + 0.944900i \(0.393842\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.06798 −0.235668
\(78\) 0 0
\(79\) 1.02248i 0.115038i 0.998344 + 0.0575190i \(0.0183190\pi\)
−0.998344 + 0.0575190i \(0.981681\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 14.0877i 1.54632i 0.634210 + 0.773161i \(0.281325\pi\)
−0.634210 + 0.773161i \(0.718675\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 13.0761i − 1.38607i −0.720906 0.693033i \(-0.756274\pi\)
0.720906 0.693033i \(-0.243726\pi\)
\(90\) 0 0
\(91\) −3.12311 −0.327390
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −2.18379 −0.221730 −0.110865 0.993835i \(-0.535362\pi\)
−0.110865 + 0.993835i \(0.535362\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.29801 −0.328165 −0.164082 0.986447i \(-0.552466\pi\)
−0.164082 + 0.986447i \(0.552466\pi\)
\(102\) 0 0
\(103\) 18.0227i 1.77583i 0.460012 + 0.887913i \(0.347845\pi\)
−0.460012 + 0.887913i \(0.652155\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.9993i 1.06334i 0.846950 + 0.531672i \(0.178436\pi\)
−0.846950 + 0.531672i \(0.821564\pi\)
\(108\) 0 0
\(109\) 11.9473i 1.14435i 0.820133 + 0.572173i \(0.193900\pi\)
−0.820133 + 0.572173i \(0.806100\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 12.5435i 1.17999i 0.807406 + 0.589996i \(0.200871\pi\)
−0.807406 + 0.589996i \(0.799129\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.44600 0.132555
\(120\) 0 0
\(121\) 6.12311 0.556646
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 4.68213i 0.415472i 0.978185 + 0.207736i \(0.0666095\pi\)
−0.978185 + 0.207736i \(0.933391\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.620058i 0.0541747i 0.999633 + 0.0270874i \(0.00862323\pi\)
−0.999633 + 0.0270874i \(0.991377\pi\)
\(132\) 0 0
\(133\) − 2.92456i − 0.253591i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 1.54417i − 0.131928i −0.997822 0.0659638i \(-0.978988\pi\)
0.997822 0.0659638i \(-0.0210122\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −7.36520 −0.615909
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.85201 0.151722 0.0758612 0.997118i \(-0.475829\pi\)
0.0758612 + 0.997118i \(0.475829\pi\)
\(150\) 0 0
\(151\) 17.6339i 1.43503i 0.696545 + 0.717513i \(0.254720\pi\)
−0.696545 + 0.717513i \(0.745280\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2.80928i 0.224205i 0.993697 + 0.112102i \(0.0357585\pi\)
−0.993697 + 0.112102i \(0.964242\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.17662i 0.250353i
\(162\) 0 0
\(163\) 15.5554 1.21839 0.609195 0.793020i \(-0.291492\pi\)
0.609195 + 0.793020i \(0.291492\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.43318 0.729961 0.364981 0.931015i \(-0.381076\pi\)
0.364981 + 0.931015i \(0.381076\pi\)
\(168\) 0 0
\(169\) 1.87689 0.144376
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.69614 −0.128955 −0.0644776 0.997919i \(-0.520538\pi\)
−0.0644776 + 0.997919i \(0.520538\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 8.21342i 0.613900i 0.951726 + 0.306950i \(0.0993084\pi\)
−0.951726 + 0.306950i \(0.900692\pi\)
\(180\) 0 0
\(181\) − 4.66410i − 0.346680i −0.984862 0.173340i \(-0.944544\pi\)
0.984862 0.173340i \(-0.0554559\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3.41011 0.249372
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.1921 0.954544 0.477272 0.878756i \(-0.341626\pi\)
0.477272 + 0.878756i \(0.341626\pi\)
\(192\) 0 0
\(193\) 23.3331 1.67955 0.839775 0.542934i \(-0.182687\pi\)
0.839775 + 0.542934i \(0.182687\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −4.92539 −0.350920 −0.175460 0.984487i \(-0.556141\pi\)
−0.175460 + 0.984487i \(0.556141\pi\)
\(198\) 0 0
\(199\) − 17.6339i − 1.25003i −0.780611 0.625017i \(-0.785092\pi\)
0.780611 0.625017i \(-0.214908\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 7.91096i 0.555241i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 6.89697i − 0.477073i
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 7.77769 0.527984
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5.15002 0.346428
\(222\) 0 0
\(223\) − 21.9989i − 1.47316i −0.676352 0.736578i \(-0.736440\pi\)
0.676352 0.736578i \(-0.263560\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.08835i 0.204981i 0.994734 + 0.102490i \(0.0326811\pi\)
−0.994734 + 0.102490i \(0.967319\pi\)
\(228\) 0 0
\(229\) 2.61914i 0.173077i 0.996248 + 0.0865387i \(0.0275806\pi\)
−0.996248 + 0.0865387i \(0.972419\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.4544i 1.34002i 0.742354 + 0.670008i \(0.233709\pi\)
−0.742354 + 0.670008i \(0.766291\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −23.4921 −1.51958 −0.759789 0.650170i \(-0.774698\pi\)
−0.759789 + 0.650170i \(0.774698\pi\)
\(240\) 0 0
\(241\) −4.00000 −0.257663 −0.128831 0.991667i \(-0.541123\pi\)
−0.128831 + 0.991667i \(0.541123\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 10.4160i − 0.662752i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 3.44849i 0.217666i 0.994060 + 0.108833i \(0.0347114\pi\)
−0.994060 + 0.108833i \(0.965289\pi\)
\(252\) 0 0
\(253\) 7.49141i 0.470981i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 15.6318i 0.975087i 0.873099 + 0.487543i \(0.162107\pi\)
−0.873099 + 0.487543i \(0.837893\pi\)
\(258\) 0 0
\(259\) 7.12311 0.442608
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −14.7304 −0.908316 −0.454158 0.890921i \(-0.650060\pi\)
−0.454158 + 0.890921i \(0.650060\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −15.0441 −0.917253 −0.458626 0.888629i \(-0.651658\pi\)
−0.458626 + 0.888629i \(0.651658\pi\)
\(270\) 0 0
\(271\) − 10.3507i − 0.628758i −0.949297 0.314379i \(-0.898204\pi\)
0.949297 0.314379i \(-0.101796\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 23.3459i 1.40272i 0.712807 + 0.701360i \(0.247424\pi\)
−0.712807 + 0.701360i \(0.752576\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 3.00252i − 0.179116i −0.995982 0.0895578i \(-0.971455\pi\)
0.995982 0.0895578i \(-0.0285454\pi\)
\(282\) 0 0
\(283\) 23.3331 1.38701 0.693503 0.720453i \(-0.256066\pi\)
0.693503 + 0.720453i \(0.256066\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.46026 0.322309
\(288\) 0 0
\(289\) 14.6155 0.859737
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −29.8326 −1.74284 −0.871421 0.490536i \(-0.836801\pi\)
−0.871421 + 0.490536i \(0.836801\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 11.3137i 0.654289i
\(300\) 0 0
\(301\) 7.28323i 0.419799i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −4.36758 −0.249271 −0.124636 0.992203i \(-0.539776\pi\)
−0.124636 + 0.992203i \(0.539776\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 10.3000 0.584062 0.292031 0.956409i \(-0.405669\pi\)
0.292031 + 0.956409i \(0.405669\pi\)
\(312\) 0 0
\(313\) 32.0682 1.81260 0.906302 0.422631i \(-0.138893\pi\)
0.906302 + 0.422631i \(0.138893\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 24.5354 1.37805 0.689023 0.724739i \(-0.258040\pi\)
0.689023 + 0.724739i \(0.258040\pi\)
\(318\) 0 0
\(319\) 18.6564i 1.04456i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.82262i 0.268338i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 10.0736i − 0.555375i
\(330\) 0 0
\(331\) 1.36932 0.0752645 0.0376322 0.999292i \(-0.488018\pi\)
0.0376322 + 0.999292i \(0.488018\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 29.8844 1.62791 0.813954 0.580929i \(-0.197310\pi\)
0.813954 + 0.580929i \(0.197310\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 18.3421 0.993279
\(342\) 0 0
\(343\) 12.2888i 0.663534i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 14.0877i − 0.756265i −0.925751 0.378133i \(-0.876566\pi\)
0.925751 0.378133i \(-0.123434\pi\)
\(348\) 0 0
\(349\) − 33.2228i − 1.77838i −0.457540 0.889189i \(-0.651269\pi\)
0.457540 0.889189i \(-0.348731\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 7.72087i − 0.410940i −0.978663 0.205470i \(-0.934128\pi\)
0.978663 0.205470i \(-0.0658724\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.44600 0.0763172 0.0381586 0.999272i \(-0.487851\pi\)
0.0381586 + 0.999272i \(0.487851\pi\)
\(360\) 0 0
\(361\) −9.24621 −0.486643
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 32.4149i 1.69204i 0.533148 + 0.846022i \(0.321009\pi\)
−0.533148 + 0.846022i \(0.678991\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4.76493i 0.247383i
\(372\) 0 0
\(373\) 9.47954i 0.490832i 0.969418 + 0.245416i \(0.0789246\pi\)
−0.969418 + 0.245416i \(0.921075\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 28.1753i 1.45110i
\(378\) 0 0
\(379\) −16.4924 −0.847159 −0.423579 0.905859i \(-0.639227\pi\)
−0.423579 + 0.905859i \(0.639227\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10.0138 0.511682 0.255841 0.966719i \(-0.417648\pi\)
0.255841 + 0.966719i \(0.417648\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 9.89404 0.501648 0.250824 0.968033i \(-0.419298\pi\)
0.250824 + 0.968033i \(0.419298\pi\)
\(390\) 0 0
\(391\) − 5.23827i − 0.264911i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 10.3007i 0.516977i 0.966014 + 0.258488i \(0.0832244\pi\)
−0.966014 + 0.258488i \(0.916776\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 0.522293i − 0.0260821i −0.999915 0.0130410i \(-0.995849\pi\)
0.999915 0.0130410i \(-0.00415121\pi\)
\(402\) 0 0
\(403\) 27.7006 1.37987
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 16.7984 0.832665
\(408\) 0 0
\(409\) −3.12311 −0.154428 −0.0772138 0.997015i \(-0.524602\pi\)
−0.0772138 + 0.997015i \(0.524602\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −10.0138 −0.492748
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 32.4291i − 1.58427i −0.610348 0.792134i \(-0.708970\pi\)
0.610348 0.792134i \(-0.291030\pi\)
\(420\) 0 0
\(421\) 30.6037i 1.49153i 0.666207 + 0.745767i \(0.267917\pi\)
−0.666207 + 0.745767i \(0.732083\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.44600 0.0696516 0.0348258 0.999393i \(-0.488912\pi\)
0.0348258 + 0.999393i \(0.488912\pi\)
\(432\) 0 0
\(433\) 15.5554 0.747544 0.373772 0.927521i \(-0.378064\pi\)
0.373772 + 0.927521i \(0.378064\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.5945 −0.506802
\(438\) 0 0
\(439\) − 26.9621i − 1.28683i −0.765517 0.643415i \(-0.777517\pi\)
0.765517 0.643415i \(-0.222483\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 25.0870i 1.19192i 0.803015 + 0.595959i \(0.203228\pi\)
−0.803015 + 0.595959i \(0.796772\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9.89949i 0.467186i 0.972334 + 0.233593i \(0.0750483\pi\)
−0.972334 + 0.233593i \(0.924952\pi\)
\(450\) 0 0
\(451\) 12.8769 0.606349
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 13.3716 0.625496 0.312748 0.949836i \(-0.398750\pi\)
0.312748 + 0.949836i \(0.398750\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.85201 −0.0862567 −0.0431283 0.999070i \(-0.513732\pi\)
−0.0431283 + 0.999070i \(0.513732\pi\)
\(462\) 0 0
\(463\) − 13.2252i − 0.614629i −0.951608 0.307315i \(-0.900570\pi\)
0.951608 0.307315i \(-0.0994304\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 18.9103i 0.875063i 0.899203 + 0.437532i \(0.144147\pi\)
−0.899203 + 0.437532i \(0.855853\pi\)
\(468\) 0 0
\(469\) 11.3732i 0.525163i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 17.1760i 0.789754i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −14.6381 −0.668830 −0.334415 0.942426i \(-0.608539\pi\)
−0.334415 + 0.942426i \(0.608539\pi\)
\(480\) 0 0
\(481\) 25.3693 1.15674
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 29.4903i − 1.33633i −0.744011 0.668167i \(-0.767079\pi\)
0.744011 0.668167i \(-0.232921\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 16.3505i 0.737888i 0.929452 + 0.368944i \(0.120281\pi\)
−0.929452 + 0.368944i \(0.879719\pi\)
\(492\) 0 0
\(493\) − 13.0452i − 0.587528i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 10.9993i − 0.493387i
\(498\) 0 0
\(499\) 16.8769 0.755514 0.377757 0.925905i \(-0.376696\pi\)
0.377757 + 0.925905i \(0.376696\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −16.0547 −0.715844 −0.357922 0.933751i \(-0.616515\pi\)
−0.357922 + 0.933751i \(0.616515\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.29801 0.146182 0.0730909 0.997325i \(-0.476714\pi\)
0.0730909 + 0.997325i \(0.476714\pi\)
\(510\) 0 0
\(511\) 5.23827i 0.231728i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 23.7565i − 1.04481i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 2.65433i − 0.116288i −0.998308 0.0581441i \(-0.981482\pi\)
0.998308 0.0581441i \(-0.0185183\pi\)
\(522\) 0 0
\(523\) −4.36758 −0.190981 −0.0954905 0.995430i \(-0.530442\pi\)
−0.0954905 + 0.995430i \(0.530442\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −12.8255 −0.558686
\(528\) 0 0
\(529\) −11.4924 −0.499671
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 19.4470 0.842343
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 13.5221i 0.582437i
\(540\) 0 0
\(541\) − 9.90237i − 0.425736i −0.977081 0.212868i \(-0.931720\pi\)
0.977081 0.212868i \(-0.0682804\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −16.5129 −0.706039 −0.353019 0.935616i \(-0.614845\pi\)
−0.353019 + 0.935616i \(0.614845\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −26.3841 −1.12400
\(552\) 0 0
\(553\) −0.957477 −0.0407161
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −32.6443 −1.38318 −0.691591 0.722289i \(-0.743090\pi\)
−0.691591 + 0.722289i \(0.743090\pi\)
\(558\) 0 0
\(559\) 25.9396i 1.09713i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 14.0877i − 0.593724i −0.954920 0.296862i \(-0.904060\pi\)
0.954920 0.296862i \(-0.0959401\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 30.0467i 1.25962i 0.776748 + 0.629811i \(0.216868\pi\)
−0.776748 + 0.629811i \(0.783132\pi\)
\(570\) 0 0
\(571\) −33.8617 −1.41707 −0.708535 0.705676i \(-0.750644\pi\)
−0.708535 + 0.705676i \(0.750644\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −7.77769 −0.323789 −0.161895 0.986808i \(-0.551760\pi\)
−0.161895 + 0.986808i \(0.551760\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −13.1921 −0.547299
\(582\) 0 0
\(583\) 11.2371i 0.465394i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 10.9993i − 0.453990i −0.973896 0.226995i \(-0.927110\pi\)
0.973896 0.226995i \(-0.0728901\pi\)
\(588\) 0 0
\(589\) 25.9396i 1.06882i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 43.8071i 1.79894i 0.436978 + 0.899472i \(0.356049\pi\)
−0.436978 + 0.899472i \(0.643951\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 45.5382 1.86064 0.930320 0.366749i \(-0.119529\pi\)
0.930320 + 0.366749i \(0.119529\pi\)
\(600\) 0 0
\(601\) −23.3693 −0.953254 −0.476627 0.879106i \(-0.658141\pi\)
−0.476627 + 0.879106i \(0.658141\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 9.71010i − 0.394121i −0.980391 0.197060i \(-0.936860\pi\)
0.980391 0.197060i \(-0.0631395\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 35.8776i − 1.45145i
\(612\) 0 0
\(613\) 23.8718i 0.964172i 0.876124 + 0.482086i \(0.160121\pi\)
−0.876124 + 0.482086i \(0.839879\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 15.6318i − 0.629314i −0.949205 0.314657i \(-0.898111\pi\)
0.949205 0.314657i \(-0.101889\pi\)
\(618\) 0 0
\(619\) 18.7386 0.753169 0.376585 0.926382i \(-0.377098\pi\)
0.376585 + 0.926382i \(0.377098\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12.2448 0.490578
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −11.7460 −0.468346
\(630\) 0 0
\(631\) 17.6339i 0.701995i 0.936376 + 0.350997i \(0.114157\pi\)
−0.936376 + 0.350997i \(0.885843\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 20.4214i 0.809124i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 7.07107i − 0.279290i −0.990202 0.139645i \(-0.955404\pi\)
0.990202 0.139645i \(-0.0445962\pi\)
\(642\) 0 0
\(643\) −8.73516 −0.344481 −0.172241 0.985055i \(-0.555101\pi\)
−0.172241 + 0.985055i \(0.555101\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.32431 0.0520639 0.0260319 0.999661i \(-0.491713\pi\)
0.0260319 + 0.999661i \(0.491713\pi\)
\(648\) 0 0
\(649\) −23.6155 −0.926991
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 15.8459 0.620098 0.310049 0.950721i \(-0.399654\pi\)
0.310049 + 0.950721i \(0.399654\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 33.3211i − 1.29800i −0.760786 0.649002i \(-0.775187\pi\)
0.760786 0.649002i \(-0.224813\pi\)
\(660\) 0 0
\(661\) − 44.5960i − 1.73458i −0.497800 0.867292i \(-0.665859\pi\)
0.497800 0.867292i \(-0.334141\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 28.6581 1.10965
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5.25145 −0.201830 −0.100915 0.994895i \(-0.532177\pi\)
−0.100915 + 0.994895i \(0.532177\pi\)
\(678\) 0 0
\(679\) − 2.04496i − 0.0784783i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 20.2644i 0.775394i 0.921787 + 0.387697i \(0.126729\pi\)
−0.921787 + 0.387697i \(0.873271\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 16.9706i 0.646527i
\(690\) 0 0
\(691\) 23.1231 0.879644 0.439822 0.898085i \(-0.355041\pi\)
0.439822 + 0.898085i \(0.355041\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −9.00400 −0.341051
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −20.1941 −0.762720 −0.381360 0.924427i \(-0.624544\pi\)
−0.381360 + 0.924427i \(0.624544\pi\)
\(702\) 0 0
\(703\) 23.7565i 0.895993i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 3.08835i − 0.116149i
\(708\) 0 0
\(709\) − 30.6037i − 1.14935i −0.818383 0.574673i \(-0.805129\pi\)
0.818383 0.574673i \(-0.194871\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 28.1753i − 1.05517i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 32.3461 1.20631 0.603154 0.797625i \(-0.293911\pi\)
0.603154 + 0.797625i \(0.293911\pi\)
\(720\) 0 0
\(721\) −16.8769 −0.628528
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 9.47954i − 0.351577i −0.984428 0.175788i \(-0.943753\pi\)
0.984428 0.175788i \(-0.0562475\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 12.0101i − 0.444210i
\(732\) 0 0
\(733\) 19.6002i 0.723951i 0.932188 + 0.361975i \(0.117898\pi\)
−0.932188 + 0.361975i \(0.882102\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 26.8212i 0.987973i
\(738\) 0 0
\(739\) 35.6155 1.31014 0.655069 0.755569i \(-0.272639\pi\)
0.655069 + 0.755569i \(0.272639\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 10.0138 0.367371 0.183686 0.982985i \(-0.441197\pi\)
0.183686 + 0.982985i \(0.441197\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −10.3000 −0.376355
\(750\) 0 0
\(751\) − 41.5286i − 1.51540i −0.652604 0.757699i \(-0.726323\pi\)
0.652604 0.757699i \(-0.273677\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 3.33513i − 0.121217i −0.998162 0.0606087i \(-0.980696\pi\)
0.998162 0.0606087i \(-0.0193042\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 49.3019i 1.78719i 0.448870 + 0.893597i \(0.351827\pi\)
−0.448870 + 0.893597i \(0.648173\pi\)
\(762\) 0 0
\(763\) −11.1878 −0.405025
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −35.6647 −1.28778
\(768\) 0 0
\(769\) −25.6155 −0.923720 −0.461860 0.886953i \(-0.652818\pi\)
−0.461860 + 0.886953i \(0.652818\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −2.27678 −0.0818901 −0.0409450 0.999161i \(-0.513037\pi\)
−0.0409450 + 0.999161i \(0.513037\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 18.2107i 0.652465i
\(780\) 0 0
\(781\) − 25.9396i − 0.928192i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 19.9230 0.710177 0.355088 0.934833i \(-0.384451\pi\)
0.355088 + 0.934833i \(0.384451\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −11.7460 −0.417641
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 15.6829 0.555516 0.277758 0.960651i \(-0.410409\pi\)
0.277758 + 0.960651i \(0.410409\pi\)
\(798\) 0 0
\(799\) 16.6114i 0.587670i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 12.3534i 0.435942i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 20.6695i 0.726700i 0.931653 + 0.363350i \(0.118367\pi\)
−0.931653 + 0.363350i \(0.881633\pi\)
\(810\) 0 0
\(811\) 49.4773 1.73738 0.868691 0.495354i \(-0.164962\pi\)
0.868691 + 0.495354i \(0.164962\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −24.2905 −0.849818
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −12.1521 −0.424110 −0.212055 0.977258i \(-0.568016\pi\)
−0.212055 + 0.977258i \(0.568016\pi\)
\(822\) 0 0
\(823\) 28.6692i 0.999345i 0.866214 + 0.499673i \(0.166546\pi\)
−0.866214 + 0.499673i \(0.833454\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 39.1746i 1.36224i 0.732174 + 0.681118i \(0.238506\pi\)
−0.732174 + 0.681118i \(0.761494\pi\)
\(828\) 0 0
\(829\) 4.66410i 0.161991i 0.996714 + 0.0809954i \(0.0258099\pi\)
−0.996714 + 0.0809954i \(0.974190\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 9.45514i − 0.327601i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 24.9381 0.860959 0.430479 0.902600i \(-0.358344\pi\)
0.430479 + 0.902600i \(0.358344\pi\)
\(840\) 0 0
\(841\) 42.3693 1.46101
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 5.73384i 0.197017i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 25.8040i − 0.884551i
\(852\) 0 0
\(853\) − 45.5249i − 1.55874i −0.626563 0.779371i \(-0.715539\pi\)
0.626563 0.779371i \(-0.284461\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 40.7188i − 1.39093i −0.718561 0.695464i \(-0.755199\pi\)
0.718561 0.695464i \(-0.244801\pi\)
\(858\) 0 0
\(859\) −33.7538 −1.15166 −0.575832 0.817568i \(-0.695322\pi\)
−0.575832 + 0.817568i \(0.695322\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 45.6786 1.55492 0.777458 0.628935i \(-0.216509\pi\)
0.777458 + 0.628935i \(0.216509\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −2.25801 −0.0765978
\(870\) 0 0
\(871\) 40.5061i 1.37250i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 46.5766i − 1.57278i −0.617731 0.786389i \(-0.711948\pi\)
0.617731 0.786389i \(-0.288052\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 5.83095i 0.196450i 0.995164 + 0.0982249i \(0.0313164\pi\)
−0.995164 + 0.0982249i \(0.968684\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −16.2177 −0.544538 −0.272269 0.962221i \(-0.587774\pi\)
−0.272269 + 0.962221i \(0.587774\pi\)
\(888\) 0 0
\(889\) −4.38447 −0.147050
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 33.5968 1.12427
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 70.1670i − 2.34020i
\(900\) 0 0
\(901\) − 7.85741i − 0.261768i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 16.5129 0.548300 0.274150 0.961687i \(-0.411603\pi\)
0.274150 + 0.961687i \(0.411603\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 36.6842 1.21540 0.607700 0.794167i \(-0.292092\pi\)
0.607700 + 0.794167i \(0.292092\pi\)
\(912\) 0 0
\(913\) −31.1107 −1.02962
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −0.580639 −0.0191744
\(918\) 0 0
\(919\) 30.1554i 0.994735i 0.867540 + 0.497368i \(0.165700\pi\)
−0.867540 + 0.497368i \(0.834300\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 39.1746i − 1.28945i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 3.00252i − 0.0985096i −0.998786 0.0492548i \(-0.984315\pi\)
0.998786 0.0492548i \(-0.0156846\pi\)
\(930\) 0 0
\(931\) −19.1231 −0.626734
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 3.29801 0.107512 0.0537561 0.998554i \(-0.482881\pi\)
0.0537561 + 0.998554i \(0.482881\pi\)
\(942\) 0 0
\(943\) − 19.7802i − 0.644133i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 32.9979i − 1.07229i −0.844126 0.536144i \(-0.819880\pi\)
0.844126 0.536144i \(-0.180120\pi\)
\(948\) 0 0
\(949\) 18.6564i 0.605612i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 12.5435i − 0.406323i −0.979145 0.203162i \(-0.934878\pi\)
0.979145 0.203162i \(-0.0651217\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.44600 0.0466939
\(960\) 0 0
\(961\) −37.9848 −1.22532
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 15.0981i 0.485522i 0.970086 + 0.242761i \(0.0780531\pi\)
−0.970086 + 0.242761i \(0.921947\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 19.8753i 0.637829i 0.947783 + 0.318915i \(0.103318\pi\)
−0.947783 + 0.318915i \(0.896682\pi\)
\(972\) 0 0
\(973\) − 11.2371i − 0.360245i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 37.6305i − 1.20390i −0.798532 0.601952i \(-0.794390\pi\)
0.798532 0.601952i \(-0.205610\pi\)
\(978\) 0 0
\(979\) 28.8769 0.922910
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −53.0438 −1.69183 −0.845917 0.533315i \(-0.820946\pi\)
−0.845917 + 0.533315i \(0.820946\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 26.3841 0.838966
\(990\) 0 0
\(991\) − 17.6339i − 0.560159i −0.959977 0.280080i \(-0.909639\pi\)
0.959977 0.280080i \(-0.0903609\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 25.5141i − 0.808039i −0.914750 0.404019i \(-0.867613\pi\)
0.914750 0.404019i \(-0.132387\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7200.2.b.i.4751.11 16
3.2 odd 2 inner 7200.2.b.i.4751.10 16
4.3 odd 2 1800.2.b.g.251.5 16
5.2 odd 4 1440.2.m.c.719.5 16
5.3 odd 4 1440.2.m.c.719.8 16
5.4 even 2 inner 7200.2.b.i.4751.8 16
8.3 odd 2 inner 7200.2.b.i.4751.7 16
8.5 even 2 1800.2.b.g.251.10 16
12.11 even 2 1800.2.b.g.251.11 16
15.2 even 4 1440.2.m.c.719.11 16
15.8 even 4 1440.2.m.c.719.10 16
15.14 odd 2 inner 7200.2.b.i.4751.5 16
20.3 even 4 360.2.m.c.179.3 yes 16
20.7 even 4 360.2.m.c.179.13 yes 16
20.19 odd 2 1800.2.b.g.251.12 16
24.5 odd 2 1800.2.b.g.251.8 16
24.11 even 2 inner 7200.2.b.i.4751.6 16
40.3 even 4 1440.2.m.c.719.9 16
40.13 odd 4 360.2.m.c.179.2 yes 16
40.19 odd 2 inner 7200.2.b.i.4751.12 16
40.27 even 4 1440.2.m.c.719.12 16
40.29 even 2 1800.2.b.g.251.7 16
40.37 odd 4 360.2.m.c.179.16 yes 16
60.23 odd 4 360.2.m.c.179.14 yes 16
60.47 odd 4 360.2.m.c.179.4 yes 16
60.59 even 2 1800.2.b.g.251.6 16
120.29 odd 2 1800.2.b.g.251.9 16
120.53 even 4 360.2.m.c.179.15 yes 16
120.59 even 2 inner 7200.2.b.i.4751.9 16
120.77 even 4 360.2.m.c.179.1 16
120.83 odd 4 1440.2.m.c.719.7 16
120.107 odd 4 1440.2.m.c.719.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.m.c.179.1 16 120.77 even 4
360.2.m.c.179.2 yes 16 40.13 odd 4
360.2.m.c.179.3 yes 16 20.3 even 4
360.2.m.c.179.4 yes 16 60.47 odd 4
360.2.m.c.179.13 yes 16 20.7 even 4
360.2.m.c.179.14 yes 16 60.23 odd 4
360.2.m.c.179.15 yes 16 120.53 even 4
360.2.m.c.179.16 yes 16 40.37 odd 4
1440.2.m.c.719.5 16 5.2 odd 4
1440.2.m.c.719.6 16 120.107 odd 4
1440.2.m.c.719.7 16 120.83 odd 4
1440.2.m.c.719.8 16 5.3 odd 4
1440.2.m.c.719.9 16 40.3 even 4
1440.2.m.c.719.10 16 15.8 even 4
1440.2.m.c.719.11 16 15.2 even 4
1440.2.m.c.719.12 16 40.27 even 4
1800.2.b.g.251.5 16 4.3 odd 2
1800.2.b.g.251.6 16 60.59 even 2
1800.2.b.g.251.7 16 40.29 even 2
1800.2.b.g.251.8 16 24.5 odd 2
1800.2.b.g.251.9 16 120.29 odd 2
1800.2.b.g.251.10 16 8.5 even 2
1800.2.b.g.251.11 16 12.11 even 2
1800.2.b.g.251.12 16 20.19 odd 2
7200.2.b.i.4751.5 16 15.14 odd 2 inner
7200.2.b.i.4751.6 16 24.11 even 2 inner
7200.2.b.i.4751.7 16 8.3 odd 2 inner
7200.2.b.i.4751.8 16 5.4 even 2 inner
7200.2.b.i.4751.9 16 120.59 even 2 inner
7200.2.b.i.4751.10 16 3.2 odd 2 inner
7200.2.b.i.4751.11 16 1.1 even 1 trivial
7200.2.b.i.4751.12 16 40.19 odd 2 inner