Properties

Label 1440.2.m.c.719.5
Level $1440$
Weight $2$
Character 1440.719
Analytic conductor $11.498$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1440,2,Mod(719,1440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1440.719");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1440.m (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.4984578911\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 17x^{12} - 104x^{10} + 713x^{8} + 238x^{6} + 1004x^{4} - 152x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{20} \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 719.5
Root \(-0.877859 + 2.23141i\) of defining polynomial
Character \(\chi\) \(=\) 1440.719
Dual form 1440.2.m.c.719.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.64901 - 1.51022i) q^{5} -0.936426 q^{7} +2.20837i q^{11} +3.33513 q^{13} +1.54417 q^{17} +3.12311 q^{19} -3.39228i q^{23} +(0.438447 + 4.98074i) q^{25} -8.44804 q^{29} -8.30571i q^{31} +(1.54417 + 1.41421i) q^{35} +7.60669 q^{37} -5.83095i q^{41} -7.77769i q^{43} -10.7575i q^{47} -6.12311 q^{49} -5.08842i q^{53} +(3.33513 - 3.64162i) q^{55} -10.6937i q^{59} +(-5.49966 - 5.03680i) q^{65} +12.1453i q^{67} -11.7460 q^{71} -5.59390i q^{73} -2.06798i q^{77} -1.02248i q^{79} +14.0877 q^{83} +(-2.54635 - 2.33205i) q^{85} +13.0761i q^{89} -3.12311 q^{91} +(-5.15002 - 4.71659i) q^{95} -2.18379i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{19} + 40 q^{25} - 32 q^{49} + 16 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1440\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(991\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.64901 1.51022i −0.737458 0.675393i
\(6\) 0 0
\(7\) −0.936426 −0.353936 −0.176968 0.984217i \(-0.556629\pi\)
−0.176968 + 0.984217i \(0.556629\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.20837i 0.665848i 0.942954 + 0.332924i \(0.108035\pi\)
−0.942954 + 0.332924i \(0.891965\pi\)
\(12\) 0 0
\(13\) 3.33513 0.924999 0.462500 0.886619i \(-0.346953\pi\)
0.462500 + 0.886619i \(0.346953\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.54417 0.374517 0.187259 0.982311i \(-0.440040\pi\)
0.187259 + 0.982311i \(0.440040\pi\)
\(18\) 0 0
\(19\) 3.12311 0.716490 0.358245 0.933628i \(-0.383375\pi\)
0.358245 + 0.933628i \(0.383375\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.39228i 0.707340i −0.935370 0.353670i \(-0.884934\pi\)
0.935370 0.353670i \(-0.115066\pi\)
\(24\) 0 0
\(25\) 0.438447 + 4.98074i 0.0876894 + 0.996148i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −8.44804 −1.56876 −0.784380 0.620280i \(-0.787019\pi\)
−0.784380 + 0.620280i \(0.787019\pi\)
\(30\) 0 0
\(31\) 8.30571i 1.49175i −0.666086 0.745875i \(-0.732032\pi\)
0.666086 0.745875i \(-0.267968\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.54417 + 1.41421i 0.261013 + 0.239046i
\(36\) 0 0
\(37\) 7.60669 1.25053 0.625266 0.780412i \(-0.284990\pi\)
0.625266 + 0.780412i \(0.284990\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.83095i 0.910642i −0.890327 0.455321i \(-0.849525\pi\)
0.890327 0.455321i \(-0.150475\pi\)
\(42\) 0 0
\(43\) 7.77769i 1.18609i −0.805171 0.593043i \(-0.797926\pi\)
0.805171 0.593043i \(-0.202074\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.7575i 1.56914i −0.620040 0.784570i \(-0.712884\pi\)
0.620040 0.784570i \(-0.287116\pi\)
\(48\) 0 0
\(49\) −6.12311 −0.874729
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.08842i 0.698949i −0.936946 0.349474i \(-0.886360\pi\)
0.936946 0.349474i \(-0.113640\pi\)
\(54\) 0 0
\(55\) 3.33513 3.64162i 0.449709 0.491035i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.6937i 1.39219i −0.717947 0.696097i \(-0.754918\pi\)
0.717947 0.696097i \(-0.245082\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5.49966 5.03680i −0.682148 0.624738i
\(66\) 0 0
\(67\) 12.1453i 1.48378i 0.670521 + 0.741890i \(0.266071\pi\)
−0.670521 + 0.741890i \(0.733929\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −11.7460 −1.39400 −0.697000 0.717071i \(-0.745482\pi\)
−0.697000 + 0.717071i \(0.745482\pi\)
\(72\) 0 0
\(73\) 5.59390i 0.654716i −0.944900 0.327358i \(-0.893842\pi\)
0.944900 0.327358i \(-0.106158\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.06798i 0.235668i
\(78\) 0 0
\(79\) 1.02248i 0.115038i −0.998344 0.0575190i \(-0.981681\pi\)
0.998344 0.0575190i \(-0.0183190\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 14.0877 1.54632 0.773161 0.634210i \(-0.218675\pi\)
0.773161 + 0.634210i \(0.218675\pi\)
\(84\) 0 0
\(85\) −2.54635 2.33205i −0.276191 0.252946i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 13.0761i 1.38607i 0.720906 + 0.693033i \(0.243726\pi\)
−0.720906 + 0.693033i \(0.756274\pi\)
\(90\) 0 0
\(91\) −3.12311 −0.327390
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −5.15002 4.71659i −0.528381 0.483912i
\(96\) 0 0
\(97\) 2.18379i 0.221730i −0.993835 0.110865i \(-0.964638\pi\)
0.993835 0.110865i \(-0.0353622\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.29801 −0.328165 −0.164082 0.986447i \(-0.552466\pi\)
−0.164082 + 0.986447i \(0.552466\pi\)
\(102\) 0 0
\(103\) 18.0227 1.77583 0.887913 0.460012i \(-0.152155\pi\)
0.887913 + 0.460012i \(0.152155\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −10.9993 −1.06334 −0.531672 0.846950i \(-0.678436\pi\)
−0.531672 + 0.846950i \(0.678436\pi\)
\(108\) 0 0
\(109\) 11.9473i 1.14435i −0.820133 0.572173i \(-0.806100\pi\)
0.820133 0.572173i \(-0.193900\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 12.5435 1.17999 0.589996 0.807406i \(-0.299129\pi\)
0.589996 + 0.807406i \(0.299129\pi\)
\(114\) 0 0
\(115\) −5.12311 + 5.59390i −0.477732 + 0.521634i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.44600 −0.132555
\(120\) 0 0
\(121\) 6.12311 0.556646
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.79903 8.87543i 0.608124 0.793842i
\(126\) 0 0
\(127\) −4.68213 −0.415472 −0.207736 0.978185i \(-0.566609\pi\)
−0.207736 + 0.978185i \(0.566609\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.620058i 0.0541747i 0.999633 + 0.0270874i \(0.00862323\pi\)
−0.999633 + 0.0270874i \(0.991377\pi\)
\(132\) 0 0
\(133\) −2.92456 −0.253591
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.54417 0.131928 0.0659638 0.997822i \(-0.478988\pi\)
0.0659638 + 0.997822i \(0.478988\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 7.36520i 0.615909i
\(144\) 0 0
\(145\) 13.9309 + 12.7584i 1.15690 + 1.05953i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.85201 −0.151722 −0.0758612 0.997118i \(-0.524171\pi\)
−0.0758612 + 0.997118i \(0.524171\pi\)
\(150\) 0 0
\(151\) 17.6339i 1.43503i 0.696545 + 0.717513i \(0.254720\pi\)
−0.696545 + 0.717513i \(0.745280\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −12.5435 + 13.6962i −1.00752 + 1.10010i
\(156\) 0 0
\(157\) −2.80928 −0.224205 −0.112102 0.993697i \(-0.535758\pi\)
−0.112102 + 0.993697i \(0.535758\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.17662i 0.250353i
\(162\) 0 0
\(163\) 15.5554i 1.21839i −0.793020 0.609195i \(-0.791492\pi\)
0.793020 0.609195i \(-0.208508\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.43318i 0.729961i 0.931015 + 0.364981i \(0.118924\pi\)
−0.931015 + 0.364981i \(0.881076\pi\)
\(168\) 0 0
\(169\) −1.87689 −0.144376
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.69614i 0.128955i 0.997919 + 0.0644776i \(0.0205381\pi\)
−0.997919 + 0.0644776i \(0.979462\pi\)
\(174\) 0 0
\(175\) −0.410574 4.66410i −0.0310364 0.352572i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 8.21342i 0.613900i −0.951726 0.306950i \(-0.900692\pi\)
0.951726 0.306950i \(-0.0993084\pi\)
\(180\) 0 0
\(181\) 4.66410i 0.346680i −0.984862 0.173340i \(-0.944544\pi\)
0.984862 0.173340i \(-0.0554559\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −12.5435 11.4878i −0.922215 0.844600i
\(186\) 0 0
\(187\) 3.41011i 0.249372i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.1921 0.954544 0.477272 0.878756i \(-0.341626\pi\)
0.477272 + 0.878756i \(0.341626\pi\)
\(192\) 0 0
\(193\) 23.3331i 1.67955i −0.542934 0.839775i \(-0.682687\pi\)
0.542934 0.839775i \(-0.317313\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.92539i 0.350920i −0.984487 0.175460i \(-0.943859\pi\)
0.984487 0.175460i \(-0.0561412\pi\)
\(198\) 0 0
\(199\) 17.6339i 1.25003i 0.780611 + 0.625017i \(0.214908\pi\)
−0.780611 + 0.625017i \(0.785092\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 7.91096 0.555241
\(204\) 0 0
\(205\) −8.80604 + 9.61528i −0.615041 + 0.671560i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6.89697i 0.477073i
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −11.7460 + 12.8255i −0.801074 + 0.874689i
\(216\) 0 0
\(217\) 7.77769i 0.527984i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5.15002 0.346428
\(222\) 0 0
\(223\) −21.9989 −1.47316 −0.736578 0.676352i \(-0.763560\pi\)
−0.736578 + 0.676352i \(0.763560\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3.08835 −0.204981 −0.102490 0.994734i \(-0.532681\pi\)
−0.102490 + 0.994734i \(0.532681\pi\)
\(228\) 0 0
\(229\) 2.61914i 0.173077i −0.996248 0.0865387i \(-0.972419\pi\)
0.996248 0.0865387i \(-0.0275806\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.4544 1.34002 0.670008 0.742354i \(-0.266291\pi\)
0.670008 + 0.742354i \(0.266291\pi\)
\(234\) 0 0
\(235\) −16.2462 + 17.7392i −1.05979 + 1.15718i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 23.4921 1.51958 0.759789 0.650170i \(-0.225302\pi\)
0.759789 + 0.650170i \(0.225302\pi\)
\(240\) 0 0
\(241\) −4.00000 −0.257663 −0.128831 0.991667i \(-0.541123\pi\)
−0.128831 + 0.991667i \(0.541123\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 10.0970 + 9.24726i 0.645076 + 0.590786i
\(246\) 0 0
\(247\) 10.4160 0.662752
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 3.44849i 0.217666i 0.994060 + 0.108833i \(0.0347114\pi\)
−0.994060 + 0.108833i \(0.965289\pi\)
\(252\) 0 0
\(253\) 7.49141 0.470981
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −15.6318 −0.975087 −0.487543 0.873099i \(-0.662107\pi\)
−0.487543 + 0.873099i \(0.662107\pi\)
\(258\) 0 0
\(259\) −7.12311 −0.442608
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 14.7304i 0.908316i 0.890921 + 0.454158i \(0.150060\pi\)
−0.890921 + 0.454158i \(0.849940\pi\)
\(264\) 0 0
\(265\) −7.68466 + 8.39084i −0.472065 + 0.515445i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 15.0441 0.917253 0.458626 0.888629i \(-0.348342\pi\)
0.458626 + 0.888629i \(0.348342\pi\)
\(270\) 0 0
\(271\) 10.3507i 0.628758i −0.949297 0.314379i \(-0.898204\pi\)
0.949297 0.314379i \(-0.101796\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −10.9993 + 0.968253i −0.663283 + 0.0583879i
\(276\) 0 0
\(277\) −23.3459 −1.40272 −0.701360 0.712807i \(-0.747424\pi\)
−0.701360 + 0.712807i \(0.747424\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3.00252i 0.179116i −0.995982 0.0895578i \(-0.971455\pi\)
0.995982 0.0895578i \(-0.0285454\pi\)
\(282\) 0 0
\(283\) 23.3331i 1.38701i −0.720453 0.693503i \(-0.756066\pi\)
0.720453 0.693503i \(-0.243934\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.46026i 0.322309i
\(288\) 0 0
\(289\) −14.6155 −0.859737
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 29.8326i 1.74284i 0.490536 + 0.871421i \(0.336801\pi\)
−0.490536 + 0.871421i \(0.663199\pi\)
\(294\) 0 0
\(295\) −16.1498 + 17.6339i −0.940278 + 1.02669i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 11.3137i 0.654289i
\(300\) 0 0
\(301\) 7.28323i 0.419799i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 4.36758i 0.249271i −0.992203 0.124636i \(-0.960224\pi\)
0.992203 0.124636i \(-0.0397762\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 10.3000 0.584062 0.292031 0.956409i \(-0.405669\pi\)
0.292031 + 0.956409i \(0.405669\pi\)
\(312\) 0 0
\(313\) 32.0682i 1.81260i −0.422631 0.906302i \(-0.638893\pi\)
0.422631 0.906302i \(-0.361107\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 24.5354i 1.37805i 0.724739 + 0.689023i \(0.241960\pi\)
−0.724739 + 0.689023i \(0.758040\pi\)
\(318\) 0 0
\(319\) 18.6564i 1.04456i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.82262 0.268338
\(324\) 0 0
\(325\) 1.46228 + 16.6114i 0.0811127 + 0.921436i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 10.0736i 0.555375i
\(330\) 0 0
\(331\) 1.36932 0.0752645 0.0376322 0.999292i \(-0.488018\pi\)
0.0376322 + 0.999292i \(0.488018\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 18.3421 20.0276i 1.00213 1.09423i
\(336\) 0 0
\(337\) 29.8844i 1.62791i 0.580929 + 0.813954i \(0.302690\pi\)
−0.580929 + 0.813954i \(0.697310\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 18.3421 0.993279
\(342\) 0 0
\(343\) 12.2888 0.663534
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 14.0877 0.756265 0.378133 0.925751i \(-0.376566\pi\)
0.378133 + 0.925751i \(0.376566\pi\)
\(348\) 0 0
\(349\) 33.2228i 1.77838i 0.457540 + 0.889189i \(0.348731\pi\)
−0.457540 + 0.889189i \(0.651269\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −7.72087 −0.410940 −0.205470 0.978663i \(-0.565872\pi\)
−0.205470 + 0.978663i \(0.565872\pi\)
\(354\) 0 0
\(355\) 19.3693 + 17.7392i 1.02802 + 0.941497i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.44600 −0.0763172 −0.0381586 0.999272i \(-0.512149\pi\)
−0.0381586 + 0.999272i \(0.512149\pi\)
\(360\) 0 0
\(361\) −9.24621 −0.486643
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −8.44804 + 9.22437i −0.442190 + 0.482826i
\(366\) 0 0
\(367\) −32.4149 −1.69204 −0.846022 0.533148i \(-0.821009\pi\)
−0.846022 + 0.533148i \(0.821009\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4.76493i 0.247383i
\(372\) 0 0
\(373\) 9.47954 0.490832 0.245416 0.969418i \(-0.421075\pi\)
0.245416 + 0.969418i \(0.421075\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −28.1753 −1.45110
\(378\) 0 0
\(379\) 16.4924 0.847159 0.423579 0.905859i \(-0.360773\pi\)
0.423579 + 0.905859i \(0.360773\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10.0138i 0.511682i −0.966719 0.255841i \(-0.917648\pi\)
0.966719 0.255841i \(-0.0823524\pi\)
\(384\) 0 0
\(385\) −3.12311 + 3.41011i −0.159168 + 0.173795i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −9.89404 −0.501648 −0.250824 0.968033i \(-0.580702\pi\)
−0.250824 + 0.968033i \(0.580702\pi\)
\(390\) 0 0
\(391\) 5.23827i 0.264911i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.54417 + 1.68608i −0.0776958 + 0.0848357i
\(396\) 0 0
\(397\) −10.3007 −0.516977 −0.258488 0.966014i \(-0.583224\pi\)
−0.258488 + 0.966014i \(0.583224\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0.522293i 0.0260821i −0.999915 0.0130410i \(-0.995849\pi\)
0.999915 0.0130410i \(-0.00415121\pi\)
\(402\) 0 0
\(403\) 27.7006i 1.37987i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 16.7984i 0.832665i
\(408\) 0 0
\(409\) 3.12311 0.154428 0.0772138 0.997015i \(-0.475398\pi\)
0.0772138 + 0.997015i \(0.475398\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 10.0138i 0.492748i
\(414\) 0 0
\(415\) −23.2306 21.2755i −1.14035 1.04437i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 32.4291i 1.58427i 0.610348 + 0.792134i \(0.291030\pi\)
−0.610348 + 0.792134i \(0.708970\pi\)
\(420\) 0 0
\(421\) 30.6037i 1.49153i 0.666207 + 0.745767i \(0.267917\pi\)
−0.666207 + 0.745767i \(0.732083\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.677039 + 7.69113i 0.0328412 + 0.373074i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.44600 0.0696516 0.0348258 0.999393i \(-0.488912\pi\)
0.0348258 + 0.999393i \(0.488912\pi\)
\(432\) 0 0
\(433\) 15.5554i 0.747544i −0.927521 0.373772i \(-0.878064\pi\)
0.927521 0.373772i \(-0.121936\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 10.5945i 0.506802i
\(438\) 0 0
\(439\) 26.9621i 1.28683i 0.765517 + 0.643415i \(0.222483\pi\)
−0.765517 + 0.643415i \(0.777517\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 25.0870 1.19192 0.595959 0.803015i \(-0.296772\pi\)
0.595959 + 0.803015i \(0.296772\pi\)
\(444\) 0 0
\(445\) 19.7479 21.5626i 0.936139 1.02217i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9.89949i 0.467186i −0.972334 0.233593i \(-0.924952\pi\)
0.972334 0.233593i \(-0.0750483\pi\)
\(450\) 0 0
\(451\) 12.8769 0.606349
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 5.15002 + 4.71659i 0.241437 + 0.221117i
\(456\) 0 0
\(457\) 13.3716i 0.625496i 0.949836 + 0.312748i \(0.101250\pi\)
−0.949836 + 0.312748i \(0.898750\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.85201 −0.0862567 −0.0431283 0.999070i \(-0.513732\pi\)
−0.0431283 + 0.999070i \(0.513732\pi\)
\(462\) 0 0
\(463\) −13.2252 −0.614629 −0.307315 0.951608i \(-0.599430\pi\)
−0.307315 + 0.951608i \(0.599430\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −18.9103 −0.875063 −0.437532 0.899203i \(-0.644147\pi\)
−0.437532 + 0.899203i \(0.644147\pi\)
\(468\) 0 0
\(469\) 11.3732i 0.525163i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 17.1760 0.789754
\(474\) 0 0
\(475\) 1.36932 + 15.5554i 0.0628286 + 0.713730i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 14.6381 0.668830 0.334415 0.942426i \(-0.391461\pi\)
0.334415 + 0.942426i \(0.391461\pi\)
\(480\) 0 0
\(481\) 25.3693 1.15674
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.29801 + 3.60109i −0.149755 + 0.163517i
\(486\) 0 0
\(487\) 29.4903 1.33633 0.668167 0.744011i \(-0.267079\pi\)
0.668167 + 0.744011i \(0.267079\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 16.3505i 0.737888i 0.929452 + 0.368944i \(0.120281\pi\)
−0.929452 + 0.368944i \(0.879719\pi\)
\(492\) 0 0
\(493\) −13.0452 −0.587528
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.9993 0.493387
\(498\) 0 0
\(499\) −16.8769 −0.755514 −0.377757 0.925905i \(-0.623304\pi\)
−0.377757 + 0.925905i \(0.623304\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 16.0547i 0.715844i 0.933751 + 0.357922i \(0.116515\pi\)
−0.933751 + 0.357922i \(0.883485\pi\)
\(504\) 0 0
\(505\) 5.43845 + 4.98074i 0.242008 + 0.221640i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −3.29801 −0.146182 −0.0730909 0.997325i \(-0.523286\pi\)
−0.0730909 + 0.997325i \(0.523286\pi\)
\(510\) 0 0
\(511\) 5.23827i 0.231728i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −29.7195 27.2183i −1.30960 1.19938i
\(516\) 0 0
\(517\) 23.7565 1.04481
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 2.65433i 0.116288i −0.998308 0.0581441i \(-0.981482\pi\)
0.998308 0.0581441i \(-0.0185183\pi\)
\(522\) 0 0
\(523\) 4.36758i 0.190981i 0.995430 + 0.0954905i \(0.0304420\pi\)
−0.995430 + 0.0954905i \(0.969558\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 12.8255i 0.558686i
\(528\) 0 0
\(529\) 11.4924 0.499671
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 19.4470i 0.842343i
\(534\) 0 0
\(535\) 18.1379 + 16.6114i 0.784172 + 0.718174i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 13.5221i 0.582437i
\(540\) 0 0
\(541\) 9.90237i 0.425736i −0.977081 0.212868i \(-0.931720\pi\)
0.977081 0.212868i \(-0.0682804\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −18.0431 + 19.7012i −0.772883 + 0.843908i
\(546\) 0 0
\(547\) 16.5129i 0.706039i −0.935616 0.353019i \(-0.885155\pi\)
0.935616 0.353019i \(-0.114845\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −26.3841 −1.12400
\(552\) 0 0
\(553\) 0.957477i 0.0407161i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 32.6443i 1.38318i −0.722289 0.691591i \(-0.756910\pi\)
0.722289 0.691591i \(-0.243090\pi\)
\(558\) 0 0
\(559\) 25.9396i 1.09713i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −14.0877 −0.593724 −0.296862 0.954920i \(-0.595940\pi\)
−0.296862 + 0.954920i \(0.595940\pi\)
\(564\) 0 0
\(565\) −20.6843 18.9435i −0.870195 0.796958i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 30.0467i 1.25962i −0.776748 0.629811i \(-0.783132\pi\)
0.776748 0.629811i \(-0.216868\pi\)
\(570\) 0 0
\(571\) −33.8617 −1.41707 −0.708535 0.705676i \(-0.750644\pi\)
−0.708535 + 0.705676i \(0.750644\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 16.8961 1.48734i 0.704615 0.0620262i
\(576\) 0 0
\(577\) 7.77769i 0.323789i −0.986808 0.161895i \(-0.948240\pi\)
0.986808 0.161895i \(-0.0517605\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −13.1921 −0.547299
\(582\) 0 0
\(583\) 11.2371 0.465394
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10.9993 0.453990 0.226995 0.973896i \(-0.427110\pi\)
0.226995 + 0.973896i \(0.427110\pi\)
\(588\) 0 0
\(589\) 25.9396i 1.06882i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 43.8071 1.79894 0.899472 0.436978i \(-0.143951\pi\)
0.899472 + 0.436978i \(0.143951\pi\)
\(594\) 0 0
\(595\) 2.38447 + 2.18379i 0.0977538 + 0.0895267i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −45.5382 −1.86064 −0.930320 0.366749i \(-0.880471\pi\)
−0.930320 + 0.366749i \(0.880471\pi\)
\(600\) 0 0
\(601\) −23.3693 −0.953254 −0.476627 0.879106i \(-0.658141\pi\)
−0.476627 + 0.879106i \(0.658141\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −10.0970 9.24726i −0.410503 0.375955i
\(606\) 0 0
\(607\) 9.71010 0.394121 0.197060 0.980391i \(-0.436860\pi\)
0.197060 + 0.980391i \(0.436860\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 35.8776i 1.45145i
\(612\) 0 0
\(613\) 23.8718 0.964172 0.482086 0.876124i \(-0.339879\pi\)
0.482086 + 0.876124i \(0.339879\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15.6318 0.629314 0.314657 0.949205i \(-0.398111\pi\)
0.314657 + 0.949205i \(0.398111\pi\)
\(618\) 0 0
\(619\) −18.7386 −0.753169 −0.376585 0.926382i \(-0.622902\pi\)
−0.376585 + 0.926382i \(0.622902\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12.2448i 0.490578i
\(624\) 0 0
\(625\) −24.6155 + 4.36758i −0.984621 + 0.174703i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 11.7460 0.468346
\(630\) 0 0
\(631\) 17.6339i 0.701995i 0.936376 + 0.350997i \(0.114157\pi\)
−0.936376 + 0.350997i \(0.885843\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 7.72087 + 7.07107i 0.306393 + 0.280607i
\(636\) 0 0
\(637\) −20.4214 −0.809124
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 7.07107i 0.279290i −0.990202 0.139645i \(-0.955404\pi\)
0.990202 0.139645i \(-0.0445962\pi\)
\(642\) 0 0
\(643\) 8.73516i 0.344481i 0.985055 + 0.172241i \(0.0551007\pi\)
−0.985055 + 0.172241i \(0.944899\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.32431i 0.0520639i 0.999661 + 0.0260319i \(0.00828716\pi\)
−0.999661 + 0.0260319i \(0.991713\pi\)
\(648\) 0 0
\(649\) 23.6155 0.926991
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 15.8459i 0.620098i −0.950721 0.310049i \(-0.899654\pi\)
0.950721 0.310049i \(-0.100346\pi\)
\(654\) 0 0
\(655\) 0.936426 1.02248i 0.0365892 0.0399516i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 33.3211i 1.29800i 0.760786 + 0.649002i \(0.224813\pi\)
−0.760786 + 0.649002i \(0.775187\pi\)
\(660\) 0 0
\(661\) 44.5960i 1.73458i −0.497800 0.867292i \(-0.665859\pi\)
0.497800 0.867292i \(-0.334141\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4.82262 + 4.41674i 0.187013 + 0.171274i
\(666\) 0 0
\(667\) 28.6581i 1.10965i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 5.25145i 0.201830i −0.994895 0.100915i \(-0.967823\pi\)
0.994895 0.100915i \(-0.0321770\pi\)
\(678\) 0 0
\(679\) 2.04496i 0.0784783i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 20.2644 0.775394 0.387697 0.921787i \(-0.373271\pi\)
0.387697 + 0.921787i \(0.373271\pi\)
\(684\) 0 0
\(685\) −2.54635 2.33205i −0.0972911 0.0891030i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 16.9706i 0.646527i
\(690\) 0 0
\(691\) 23.1231 0.879644 0.439822 0.898085i \(-0.355041\pi\)
0.439822 + 0.898085i \(0.355041\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −19.7881 18.1227i −0.750605 0.687433i
\(696\) 0 0
\(697\) 9.00400i 0.341051i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −20.1941 −0.762720 −0.381360 0.924427i \(-0.624544\pi\)
−0.381360 + 0.924427i \(0.624544\pi\)
\(702\) 0 0
\(703\) 23.7565 0.895993
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.08835 0.116149
\(708\) 0 0
\(709\) 30.6037i 1.14935i 0.818383 + 0.574673i \(0.194871\pi\)
−0.818383 + 0.574673i \(0.805129\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −28.1753 −1.05517
\(714\) 0 0
\(715\) 11.1231 12.1453i 0.415981 0.454207i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −32.3461 −1.20631 −0.603154 0.797625i \(-0.706089\pi\)
−0.603154 + 0.797625i \(0.706089\pi\)
\(720\) 0 0
\(721\) −16.8769 −0.628528
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3.70402 42.0775i −0.137564 1.56272i
\(726\) 0 0
\(727\) 9.47954 0.351577 0.175788 0.984428i \(-0.443753\pi\)
0.175788 + 0.984428i \(0.443753\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 12.0101i 0.444210i
\(732\) 0 0
\(733\) 19.6002 0.723951 0.361975 0.932188i \(-0.382102\pi\)
0.361975 + 0.932188i \(0.382102\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −26.8212 −0.987973
\(738\) 0 0
\(739\) −35.6155 −1.31014 −0.655069 0.755569i \(-0.727361\pi\)
−0.655069 + 0.755569i \(0.727361\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 10.0138i 0.367371i −0.982985 0.183686i \(-0.941197\pi\)
0.982985 0.183686i \(-0.0588028\pi\)
\(744\) 0 0
\(745\) 3.05398 + 2.79695i 0.111889 + 0.102472i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 10.3000 0.376355
\(750\) 0 0
\(751\) 41.5286i 1.51540i −0.652604 0.757699i \(-0.726323\pi\)
0.652604 0.757699i \(-0.273677\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 26.6311 29.0784i 0.969207 1.05827i
\(756\) 0 0
\(757\) 3.33513 0.121217 0.0606087 0.998162i \(-0.480696\pi\)
0.0606087 + 0.998162i \(0.480696\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 49.3019i 1.78719i 0.448870 + 0.893597i \(0.351827\pi\)
−0.448870 + 0.893597i \(0.648173\pi\)
\(762\) 0 0
\(763\) 11.1878i 0.405025i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 35.6647i 1.28778i
\(768\) 0 0
\(769\) 25.6155 0.923720 0.461860 0.886953i \(-0.347182\pi\)
0.461860 + 0.886953i \(0.347182\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2.27678i 0.0818901i 0.999161 + 0.0409450i \(0.0130369\pi\)
−0.999161 + 0.0409450i \(0.986963\pi\)
\(774\) 0 0
\(775\) 41.3686 3.64162i 1.48600 0.130811i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 18.2107i 0.652465i
\(780\) 0 0
\(781\) 25.9396i 0.928192i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4.63252 + 4.24264i 0.165342 + 0.151426i
\(786\) 0 0
\(787\) 19.9230i 0.710177i 0.934833 + 0.355088i \(0.115549\pi\)
−0.934833 + 0.355088i \(0.884451\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −11.7460 −0.417641
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 15.6829i 0.555516i 0.960651 + 0.277758i \(0.0895913\pi\)
−0.960651 + 0.277758i \(0.910409\pi\)
\(798\) 0 0
\(799\) 16.6114i 0.587670i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 12.3534 0.435942
\(804\) 0 0
\(805\) 4.79741 5.23827i 0.169087 0.184625i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 20.6695i 0.726700i −0.931653 0.363350i \(-0.881633\pi\)
0.931653 0.363350i \(-0.118367\pi\)
\(810\) 0 0
\(811\) 49.4773 1.73738 0.868691 0.495354i \(-0.164962\pi\)
0.868691 + 0.495354i \(0.164962\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −23.4921 + 25.6509i −0.822892 + 0.898513i
\(816\) 0 0
\(817\) 24.2905i 0.849818i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −12.1521 −0.424110 −0.212055 0.977258i \(-0.568016\pi\)
−0.212055 + 0.977258i \(0.568016\pi\)
\(822\) 0 0
\(823\) 28.6692 0.999345 0.499673 0.866214i \(-0.333454\pi\)
0.499673 + 0.866214i \(0.333454\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −39.1746 −1.36224 −0.681118 0.732174i \(-0.738506\pi\)
−0.681118 + 0.732174i \(0.738506\pi\)
\(828\) 0 0
\(829\) 4.66410i 0.161991i −0.996714 0.0809954i \(-0.974190\pi\)
0.996714 0.0809954i \(-0.0258099\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −9.45514 −0.327601
\(834\) 0 0
\(835\) 14.2462 15.5554i 0.493010 0.538316i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −24.9381 −0.860959 −0.430479 0.902600i \(-0.641656\pi\)
−0.430479 + 0.902600i \(0.641656\pi\)
\(840\) 0 0
\(841\) 42.3693 1.46101
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3.09501 + 2.83453i 0.106472 + 0.0975108i
\(846\) 0 0
\(847\) −5.73384 −0.197017
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 25.8040i 0.884551i
\(852\) 0 0
\(853\) −45.5249 −1.55874 −0.779371 0.626563i \(-0.784461\pi\)
−0.779371 + 0.626563i \(0.784461\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 40.7188 1.39093 0.695464 0.718561i \(-0.255199\pi\)
0.695464 + 0.718561i \(0.255199\pi\)
\(858\) 0 0
\(859\) 33.7538 1.15166 0.575832 0.817568i \(-0.304678\pi\)
0.575832 + 0.817568i \(0.304678\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 45.6786i 1.55492i −0.628935 0.777458i \(-0.716509\pi\)
0.628935 0.777458i \(-0.283491\pi\)
\(864\) 0 0
\(865\) 2.56155 2.79695i 0.0870954 0.0950991i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2.25801 0.0765978
\(870\) 0 0
\(871\) 40.5061i 1.37250i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −6.36679 + 8.31118i −0.215237 + 0.280969i
\(876\) 0 0
\(877\) 46.5766 1.57278 0.786389 0.617731i \(-0.211948\pi\)
0.786389 + 0.617731i \(0.211948\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 5.83095i 0.196450i 0.995164 + 0.0982249i \(0.0313164\pi\)
−0.995164 + 0.0982249i \(0.968684\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 16.2177i 0.544538i −0.962221 0.272269i \(-0.912226\pi\)
0.962221 0.272269i \(-0.0877741\pi\)
\(888\) 0 0
\(889\) 4.38447 0.147050
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 33.5968i 1.12427i
\(894\) 0 0
\(895\) −12.4041 + 13.5440i −0.414623 + 0.452725i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 70.1670i 2.34020i
\(900\) 0 0
\(901\) 7.85741i 0.261768i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −7.04383 + 7.69113i −0.234145 + 0.255662i
\(906\) 0 0
\(907\) 16.5129i 0.548300i 0.961687 + 0.274150i \(0.0883965\pi\)
−0.961687 + 0.274150i \(0.911603\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 36.6842 1.21540 0.607700 0.794167i \(-0.292092\pi\)
0.607700 + 0.794167i \(0.292092\pi\)
\(912\) 0 0
\(913\) 31.1107i 1.02962i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0.580639i 0.0191744i
\(918\) 0 0
\(919\) 30.1554i 0.994735i −0.867540 0.497368i \(-0.834300\pi\)
0.867540 0.497368i \(-0.165700\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −39.1746 −1.28945
\(924\) 0 0
\(925\) 3.33513 + 37.8869i 0.109658 + 1.24571i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 3.00252i 0.0985096i 0.998786 + 0.0492548i \(0.0156846\pi\)
−0.998786 + 0.0492548i \(0.984315\pi\)
\(930\) 0 0
\(931\) −19.1231 −0.626734
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5.15002 5.62329i 0.168424 0.183901i
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 3.29801 0.107512 0.0537561 0.998554i \(-0.482881\pi\)
0.0537561 + 0.998554i \(0.482881\pi\)
\(942\) 0 0
\(943\) −19.7802 −0.644133
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 32.9979 1.07229 0.536144 0.844126i \(-0.319880\pi\)
0.536144 + 0.844126i \(0.319880\pi\)
\(948\) 0 0
\(949\) 18.6564i 0.605612i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −12.5435 −0.406323 −0.203162 0.979145i \(-0.565122\pi\)
−0.203162 + 0.979145i \(0.565122\pi\)
\(954\) 0 0
\(955\) −21.7538 19.9230i −0.703936 0.644692i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.44600 −0.0466939
\(960\) 0 0
\(961\) −37.9848 −1.22532
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −35.2381 + 38.4764i −1.13436 + 1.23860i
\(966\) 0 0
\(967\) −15.0981 −0.485522 −0.242761 0.970086i \(-0.578053\pi\)
−0.242761 + 0.970086i \(0.578053\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 19.8753i 0.637829i 0.947783 + 0.318915i \(0.103318\pi\)
−0.947783 + 0.318915i \(0.896682\pi\)
\(972\) 0 0
\(973\) −11.2371 −0.360245
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 37.6305 1.20390 0.601952 0.798532i \(-0.294390\pi\)
0.601952 + 0.798532i \(0.294390\pi\)
\(978\) 0 0
\(979\) −28.8769 −0.922910
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 53.0438i 1.69183i 0.533315 + 0.845917i \(0.320946\pi\)
−0.533315 + 0.845917i \(0.679054\pi\)
\(984\) 0 0
\(985\) −7.43845 + 8.12201i −0.237009 + 0.258789i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −26.3841 −0.838966
\(990\) 0 0
\(991\) 17.6339i 0.560159i −0.959977 0.280080i \(-0.909639\pi\)
0.959977 0.280080i \(-0.0903609\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 26.6311 29.0784i 0.844264 0.921848i
\(996\) 0 0
\(997\) 25.5141 0.808039 0.404019 0.914750i \(-0.367613\pi\)
0.404019 + 0.914750i \(0.367613\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1440.2.m.c.719.5 16
3.2 odd 2 inner 1440.2.m.c.719.11 16
4.3 odd 2 360.2.m.c.179.13 yes 16
5.2 odd 4 7200.2.b.i.4751.8 16
5.3 odd 4 7200.2.b.i.4751.11 16
5.4 even 2 inner 1440.2.m.c.719.8 16
8.3 odd 2 inner 1440.2.m.c.719.12 16
8.5 even 2 360.2.m.c.179.16 yes 16
12.11 even 2 360.2.m.c.179.4 yes 16
15.2 even 4 7200.2.b.i.4751.5 16
15.8 even 4 7200.2.b.i.4751.10 16
15.14 odd 2 inner 1440.2.m.c.719.10 16
20.3 even 4 1800.2.b.g.251.5 16
20.7 even 4 1800.2.b.g.251.12 16
20.19 odd 2 360.2.m.c.179.3 yes 16
24.5 odd 2 360.2.m.c.179.1 16
24.11 even 2 inner 1440.2.m.c.719.6 16
40.3 even 4 7200.2.b.i.4751.7 16
40.13 odd 4 1800.2.b.g.251.10 16
40.19 odd 2 inner 1440.2.m.c.719.9 16
40.27 even 4 7200.2.b.i.4751.12 16
40.29 even 2 360.2.m.c.179.2 yes 16
40.37 odd 4 1800.2.b.g.251.7 16
60.23 odd 4 1800.2.b.g.251.11 16
60.47 odd 4 1800.2.b.g.251.6 16
60.59 even 2 360.2.m.c.179.14 yes 16
120.29 odd 2 360.2.m.c.179.15 yes 16
120.53 even 4 1800.2.b.g.251.8 16
120.59 even 2 inner 1440.2.m.c.719.7 16
120.77 even 4 1800.2.b.g.251.9 16
120.83 odd 4 7200.2.b.i.4751.6 16
120.107 odd 4 7200.2.b.i.4751.9 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.m.c.179.1 16 24.5 odd 2
360.2.m.c.179.2 yes 16 40.29 even 2
360.2.m.c.179.3 yes 16 20.19 odd 2
360.2.m.c.179.4 yes 16 12.11 even 2
360.2.m.c.179.13 yes 16 4.3 odd 2
360.2.m.c.179.14 yes 16 60.59 even 2
360.2.m.c.179.15 yes 16 120.29 odd 2
360.2.m.c.179.16 yes 16 8.5 even 2
1440.2.m.c.719.5 16 1.1 even 1 trivial
1440.2.m.c.719.6 16 24.11 even 2 inner
1440.2.m.c.719.7 16 120.59 even 2 inner
1440.2.m.c.719.8 16 5.4 even 2 inner
1440.2.m.c.719.9 16 40.19 odd 2 inner
1440.2.m.c.719.10 16 15.14 odd 2 inner
1440.2.m.c.719.11 16 3.2 odd 2 inner
1440.2.m.c.719.12 16 8.3 odd 2 inner
1800.2.b.g.251.5 16 20.3 even 4
1800.2.b.g.251.6 16 60.47 odd 4
1800.2.b.g.251.7 16 40.37 odd 4
1800.2.b.g.251.8 16 120.53 even 4
1800.2.b.g.251.9 16 120.77 even 4
1800.2.b.g.251.10 16 40.13 odd 4
1800.2.b.g.251.11 16 60.23 odd 4
1800.2.b.g.251.12 16 20.7 even 4
7200.2.b.i.4751.5 16 15.2 even 4
7200.2.b.i.4751.6 16 120.83 odd 4
7200.2.b.i.4751.7 16 40.3 even 4
7200.2.b.i.4751.8 16 5.2 odd 4
7200.2.b.i.4751.9 16 120.107 odd 4
7200.2.b.i.4751.10 16 15.8 even 4
7200.2.b.i.4751.11 16 5.3 odd 4
7200.2.b.i.4751.12 16 40.27 even 4