L(s) = 1 | + (0.809 − 0.587i)3-s + (−0.809 − 0.587i)4-s + (0.309 − 0.951i)9-s − 12-s + (0.309 + 0.951i)16-s + (−0.809 + 0.587i)25-s + (−0.309 − 0.951i)27-s + (−0.618 + 1.90i)31-s + (−0.809 + 0.587i)36-s + (1.61 + 1.17i)37-s + (0.809 + 0.587i)48-s + (−0.309 − 0.951i)49-s + (0.309 − 0.951i)64-s − 2·67-s + (−0.309 + 0.951i)75-s + ⋯ |
L(s) = 1 | + (0.809 − 0.587i)3-s + (−0.809 − 0.587i)4-s + (0.309 − 0.951i)9-s − 12-s + (0.309 + 0.951i)16-s + (−0.809 + 0.587i)25-s + (−0.309 − 0.951i)27-s + (−0.618 + 1.90i)31-s + (−0.809 + 0.587i)36-s + (1.61 + 1.17i)37-s + (0.809 + 0.587i)48-s + (−0.309 − 0.951i)49-s + (0.309 − 0.951i)64-s − 2·67-s + (−0.309 + 0.951i)75-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.569 + 0.821i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.569 + 0.821i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8787395909\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8787395909\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.809 + 0.587i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 5 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 7 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 13 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (0.618 - 1.90i)T + (-0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (-1.61 - 1.17i)T + (0.309 + 0.951i)T^{2} \) |
| 41 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + 2T + T^{2} \) |
| 71 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 79 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-0.618 + 1.90i)T + (-0.809 - 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.60334923423243049189003682351, −10.35947963128729202997002505678, −9.525875442102522616499636580942, −8.769073372381244744378607124484, −7.925887670773080368600918124268, −6.80864664172881355213017516475, −5.71398631229508462563979728516, −4.45532730895249826227240071082, −3.23112915873196011125024679814, −1.54848778935769911800562078805,
2.51911550497708430071669515855, 3.81368417415172572109019823283, 4.51339613770582073786590703460, 5.81687527139242650830957661593, 7.55258136841995786417402856092, 8.068266425726644965230629538474, 9.189110537970495911476189432514, 9.612937094737320800479932744133, 10.73428730324520278723532565357, 11.82127054859491686278185255043