L(s) = 1 | + (−0.266 − 1.50i)2-s + (−1.26 + 0.460i)4-s + (−0.766 − 0.642i)5-s + (0.266 + 0.460i)8-s + (−0.766 + 1.32i)10-s + (−0.407 + 0.342i)16-s + (−0.939 + 1.62i)17-s + (0.939 + 1.62i)19-s + (1.26 + 0.460i)20-s + (0.326 − 0.118i)23-s + (0.173 + 0.984i)25-s + (−1.43 + 0.524i)31-s + (1.03 + 0.866i)32-s + (2.70 + 0.984i)34-s + (2.20 − 1.85i)38-s + ⋯ |
L(s) = 1 | + (−0.266 − 1.50i)2-s + (−1.26 + 0.460i)4-s + (−0.766 − 0.642i)5-s + (0.266 + 0.460i)8-s + (−0.766 + 1.32i)10-s + (−0.407 + 0.342i)16-s + (−0.939 + 1.62i)17-s + (0.939 + 1.62i)19-s + (1.26 + 0.460i)20-s + (0.326 − 0.118i)23-s + (0.173 + 0.984i)25-s + (−1.43 + 0.524i)31-s + (1.03 + 0.866i)32-s + (2.70 + 0.984i)34-s + (2.20 − 1.85i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3645 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.957 + 0.286i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3645 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.957 + 0.286i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5279072077\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5279072077\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.766 + 0.642i)T \) |
good | 2 | \( 1 + (0.266 + 1.50i)T + (-0.939 + 0.342i)T^{2} \) |
| 7 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 11 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 13 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 17 | \( 1 + (0.939 - 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.939 - 1.62i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.326 + 0.118i)T + (0.766 - 0.642i)T^{2} \) |
| 29 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 31 | \( 1 + (1.43 - 0.524i)T + (0.766 - 0.642i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 43 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 47 | \( 1 + (0.939 + 0.342i)T + (0.766 + 0.642i)T^{2} \) |
| 53 | \( 1 + 0.347T + T^{2} \) |
| 59 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 61 | \( 1 + (1.43 + 0.524i)T + (0.766 + 0.642i)T^{2} \) |
| 67 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 71 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.0603 - 0.342i)T + (-0.939 + 0.342i)T^{2} \) |
| 83 | \( 1 + (-0.326 - 1.85i)T + (-0.939 + 0.342i)T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.814748185280411468423177075827, −8.244651075216763627430717990307, −7.50257302724548445337270521014, −6.43085355174188743833996786674, −5.48434789997848187884558554269, −4.49345806804556776517615087665, −3.77901751627453704275834267805, −3.29709405123511897189571428868, −1.94944584391619836303582294771, −1.27863513969111598989428988487,
0.35563376167135939988379420198, 2.48127708632949201211611388845, 3.30017500722899932065874918617, 4.58581335399057711969887590909, 5.00204055613944564378515554890, 5.99989380997831250081246181092, 6.81523832302034333083246950160, 7.34062680921395021789446877603, 7.57157848662839008671540637236, 8.724786707899090744216956524661