L(s) = 1 | + (−0.266 − 1.50i)2-s + (−1.26 + 0.460i)4-s + (−0.766 − 0.642i)5-s + (0.266 + 0.460i)8-s + (−0.766 + 1.32i)10-s + (−0.407 + 0.342i)16-s + (−0.939 + 1.62i)17-s + (0.939 + 1.62i)19-s + (1.26 + 0.460i)20-s + (0.326 − 0.118i)23-s + (0.173 + 0.984i)25-s + (−1.43 + 0.524i)31-s + (1.03 + 0.866i)32-s + (2.70 + 0.984i)34-s + (2.20 − 1.85i)38-s + ⋯ |
L(s) = 1 | + (−0.266 − 1.50i)2-s + (−1.26 + 0.460i)4-s + (−0.766 − 0.642i)5-s + (0.266 + 0.460i)8-s + (−0.766 + 1.32i)10-s + (−0.407 + 0.342i)16-s + (−0.939 + 1.62i)17-s + (0.939 + 1.62i)19-s + (1.26 + 0.460i)20-s + (0.326 − 0.118i)23-s + (0.173 + 0.984i)25-s + (−1.43 + 0.524i)31-s + (1.03 + 0.866i)32-s + (2.70 + 0.984i)34-s + (2.20 − 1.85i)38-s + ⋯ |
Λ(s)=(=(3645s/2ΓC(s)L(s)(0.957+0.286i)Λ(1−s)
Λ(s)=(=(3645s/2ΓC(s)L(s)(0.957+0.286i)Λ(1−s)
Degree: |
2 |
Conductor: |
3645
= 36⋅5
|
Sign: |
0.957+0.286i
|
Analytic conductor: |
1.81909 |
Root analytic conductor: |
1.34873 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3645(2834,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3645, ( :0), 0.957+0.286i)
|
Particular Values
L(21) |
≈ |
0.5279072077 |
L(21) |
≈ |
0.5279072077 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(0.766+0.642i)T |
good | 2 | 1+(0.266+1.50i)T+(−0.939+0.342i)T2 |
| 7 | 1+(−0.766−0.642i)T2 |
| 11 | 1+(−0.173+0.984i)T2 |
| 13 | 1+(0.939+0.342i)T2 |
| 17 | 1+(0.939−1.62i)T+(−0.5−0.866i)T2 |
| 19 | 1+(−0.939−1.62i)T+(−0.5+0.866i)T2 |
| 23 | 1+(−0.326+0.118i)T+(0.766−0.642i)T2 |
| 29 | 1+(0.939−0.342i)T2 |
| 31 | 1+(1.43−0.524i)T+(0.766−0.642i)T2 |
| 37 | 1+(0.5+0.866i)T2 |
| 41 | 1+(0.939+0.342i)T2 |
| 43 | 1+(−0.173+0.984i)T2 |
| 47 | 1+(0.939+0.342i)T+(0.766+0.642i)T2 |
| 53 | 1+0.347T+T2 |
| 59 | 1+(−0.173−0.984i)T2 |
| 61 | 1+(1.43+0.524i)T+(0.766+0.642i)T2 |
| 67 | 1+(0.939+0.342i)T2 |
| 71 | 1+(0.5+0.866i)T2 |
| 73 | 1+(0.5−0.866i)T2 |
| 79 | 1+(−0.0603−0.342i)T+(−0.939+0.342i)T2 |
| 83 | 1+(−0.326−1.85i)T+(−0.939+0.342i)T2 |
| 89 | 1+(0.5−0.866i)T2 |
| 97 | 1+(−0.173+0.984i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.814748185280411468423177075827, −8.244651075216763627430717990307, −7.50257302724548445337270521014, −6.43085355174188743833996786674, −5.48434789997848187884558554269, −4.49345806804556776517615087665, −3.77901751627453704275834267805, −3.29709405123511897189571428868, −1.94944584391619836303582294771, −1.27863513969111598989428988487,
0.35563376167135939988379420198, 2.48127708632949201211611388845, 3.30017500722899932065874918617, 4.58581335399057711969887590909, 5.00204055613944564378515554890, 5.99989380997831250081246181092, 6.81523832302034333083246950160, 7.34062680921395021789446877603, 7.57157848662839008671540637236, 8.724786707899090744216956524661