Properties

Label 2-366-61.16-c1-0-1
Degree $2$
Conductor $366$
Sign $0.988 - 0.153i$
Analytic cond. $2.92252$
Root an. cond. $1.70953$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.978 − 0.207i)2-s + (−0.309 − 0.951i)3-s + (0.913 + 0.406i)4-s + (−0.0507 − 0.482i)5-s + (0.104 + 0.994i)6-s + (3.08 + 3.42i)7-s + (−0.809 − 0.587i)8-s + (−0.809 + 0.587i)9-s + (−0.0507 + 0.482i)10-s + 0.474·11-s + (0.104 − 0.994i)12-s + (−2.23 + 3.87i)13-s + (−2.30 − 3.99i)14-s + (−0.443 + 0.197i)15-s + (0.669 + 0.743i)16-s + (3.16 + 1.41i)17-s + ⋯
L(s)  = 1  + (−0.691 − 0.147i)2-s + (−0.178 − 0.549i)3-s + (0.456 + 0.203i)4-s + (−0.0226 − 0.215i)5-s + (0.0426 + 0.406i)6-s + (1.16 + 1.29i)7-s + (−0.286 − 0.207i)8-s + (−0.269 + 0.195i)9-s + (−0.0160 + 0.152i)10-s + 0.142·11-s + (0.0301 − 0.287i)12-s + (−0.620 + 1.07i)13-s + (−0.616 − 1.06i)14-s + (−0.114 + 0.0509i)15-s + (0.167 + 0.185i)16-s + (0.768 + 0.342i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 366 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.988 - 0.153i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 366 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.988 - 0.153i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(366\)    =    \(2 \cdot 3 \cdot 61\)
Sign: $0.988 - 0.153i$
Analytic conductor: \(2.92252\)
Root analytic conductor: \(1.70953\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{366} (199, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 366,\ (\ :1/2),\ 0.988 - 0.153i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.02019 + 0.0789430i\)
\(L(\frac12)\) \(\approx\) \(1.02019 + 0.0789430i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.978 + 0.207i)T \)
3 \( 1 + (0.309 + 0.951i)T \)
61 \( 1 + (-7.75 + 0.942i)T \)
good5 \( 1 + (0.0507 + 0.482i)T + (-4.89 + 1.03i)T^{2} \)
7 \( 1 + (-3.08 - 3.42i)T + (-0.731 + 6.96i)T^{2} \)
11 \( 1 - 0.474T + 11T^{2} \)
13 \( 1 + (2.23 - 3.87i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 + (-3.16 - 1.41i)T + (11.3 + 12.6i)T^{2} \)
19 \( 1 + (0.713 - 0.791i)T + (-1.98 - 18.8i)T^{2} \)
23 \( 1 + (-3.08 + 2.23i)T + (7.10 - 21.8i)T^{2} \)
29 \( 1 + (-0.725 - 1.25i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + (-2.47 + 0.525i)T + (28.3 - 12.6i)T^{2} \)
37 \( 1 + (-1.93 + 5.95i)T + (-29.9 - 21.7i)T^{2} \)
41 \( 1 + (0.412 - 1.26i)T + (-33.1 - 24.0i)T^{2} \)
43 \( 1 + (0.221 - 0.0984i)T + (28.7 - 31.9i)T^{2} \)
47 \( 1 + (-0.151 - 0.262i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-3.44 - 2.50i)T + (16.3 + 50.4i)T^{2} \)
59 \( 1 + (12.6 + 2.69i)T + (53.8 + 23.9i)T^{2} \)
67 \( 1 + (0.263 + 2.50i)T + (-65.5 + 13.9i)T^{2} \)
71 \( 1 + (-0.698 + 6.64i)T + (-69.4 - 14.7i)T^{2} \)
73 \( 1 + (0.336 - 3.20i)T + (-71.4 - 15.1i)T^{2} \)
79 \( 1 + (12.9 - 5.74i)T + (52.8 - 58.7i)T^{2} \)
83 \( 1 + (13.1 + 2.78i)T + (75.8 + 33.7i)T^{2} \)
89 \( 1 + (0.741 + 2.28i)T + (-72.0 + 52.3i)T^{2} \)
97 \( 1 + (-10.1 + 2.14i)T + (88.6 - 39.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.54553279696594828345961788822, −10.65502130496028422768502019018, −9.347039958475037808291303098295, −8.656673054893175220951426065222, −7.893094204533182626942445576176, −6.82804438617174762112339737786, −5.69755439852746329558928719708, −4.63213134533692845679641235062, −2.60709806475068881030596059820, −1.51676227730171882587677073167, 1.04191429777506131002487022571, 3.06659944026594203218880107763, 4.52977047922480802611809119161, 5.43823026299783194545111604532, 6.94856884650001974876851276103, 7.67829017010368357906940330598, 8.519922743747897410696341215648, 9.800901702169480819840013080855, 10.42190433009465324968779344182, 11.09147111681252212446555719277

Graph of the $Z$-function along the critical line