L(s) = 1 | + (−0.309 − 0.951i)2-s + (0.864 + 0.628i)3-s + (−0.809 + 0.587i)4-s + (−0.294 + 0.906i)5-s + (0.330 − 1.01i)6-s + (−3.77 + 2.73i)7-s + (0.809 + 0.587i)8-s + (−0.574 − 1.76i)9-s + 0.953·10-s + (−2.36 + 2.32i)11-s − 1.06·12-s + (1.17 + 3.60i)13-s + (3.77 + 2.73i)14-s + (−0.824 + 0.598i)15-s + (0.309 − 0.951i)16-s + (−0.309 + 0.951i)17-s + ⋯ |
L(s) = 1 | + (−0.218 − 0.672i)2-s + (0.499 + 0.362i)3-s + (−0.404 + 0.293i)4-s + (−0.131 + 0.405i)5-s + (0.134 − 0.414i)6-s + (−1.42 + 1.03i)7-s + (0.286 + 0.207i)8-s + (−0.191 − 0.589i)9-s + 0.301·10-s + (−0.714 + 0.700i)11-s − 0.308·12-s + (0.324 + 0.999i)13-s + (1.00 + 0.732i)14-s + (−0.212 + 0.154i)15-s + (0.0772 − 0.237i)16-s + (−0.0749 + 0.230i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 374 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.101 - 0.994i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 374 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.101 - 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.504889 + 0.558923i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.504889 + 0.558923i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.309 + 0.951i)T \) |
| 11 | \( 1 + (2.36 - 2.32i)T \) |
| 17 | \( 1 + (0.309 - 0.951i)T \) |
good | 3 | \( 1 + (-0.864 - 0.628i)T + (0.927 + 2.85i)T^{2} \) |
| 5 | \( 1 + (0.294 - 0.906i)T + (-4.04 - 2.93i)T^{2} \) |
| 7 | \( 1 + (3.77 - 2.73i)T + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (-1.17 - 3.60i)T + (-10.5 + 7.64i)T^{2} \) |
| 19 | \( 1 + (0.744 + 0.541i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + 7.66T + 23T^{2} \) |
| 29 | \( 1 + (-2.25 + 1.64i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (-1.43 - 4.41i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (0.366 - 0.266i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (-7.75 - 5.63i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 - 0.302T + 43T^{2} \) |
| 47 | \( 1 + (-3.59 - 2.61i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (1.73 + 5.33i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-6.58 + 4.78i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (4.29 - 13.2i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 + 4.07T + 67T^{2} \) |
| 71 | \( 1 + (-3.30 + 10.1i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (6.04 - 4.39i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (-1.07 - 3.31i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (1.90 - 5.86i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 - 15.3T + 89T^{2} \) |
| 97 | \( 1 + (4.33 + 13.3i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.75888191731138700099035589499, −10.50249385350014156007984918794, −9.695561580186681595327360118778, −9.160843619702812276776320127565, −8.266542690017854345130593971313, −6.82995941721085104159882383834, −5.94237179916219438637181545553, −4.29350565975176607710947696145, −3.21973389692345123906414072184, −2.36959359081312373501063338021,
0.49162577646795967062615664750, 2.82670091842327053794939265756, 4.05247851607060251946148273140, 5.51864019411063074955178171626, 6.43640861656677776068758388574, 7.59690554097899994362142687840, 8.106774102841191792986977005054, 9.100016646853592382864130535602, 10.25538429661832826800424915331, 10.70337944538450421768408851348