L(s) = 1 | + 2-s + 4-s + 2.09·5-s + 2.64i·7-s + 8-s + 2.09·10-s + (0.183 + 3.31i)11-s + 5.69·13-s + 2.64i·14-s + 16-s + 6.27i·17-s + (−3.98 − 1.77i)19-s + 2.09·20-s + (0.183 + 3.31i)22-s + 6.58·23-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s + 0.935·5-s + 1.00i·7-s + 0.353·8-s + 0.661·10-s + (0.0552 + 0.998i)11-s + 1.58·13-s + 0.707i·14-s + 0.250·16-s + 1.52i·17-s + (−0.913 − 0.407i)19-s + 0.467·20-s + (0.0391 + 0.706i)22-s + 1.37·23-s + ⋯ |
Λ(s)=(=(3762s/2ΓC(s)L(s)(0.356−0.934i)Λ(2−s)
Λ(s)=(=(3762s/2ΓC(s+1/2)L(s)(0.356−0.934i)Λ(1−s)
Degree: |
2 |
Conductor: |
3762
= 2⋅32⋅11⋅19
|
Sign: |
0.356−0.934i
|
Analytic conductor: |
30.0397 |
Root analytic conductor: |
5.48085 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3762(2089,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3762, ( :1/2), 0.356−0.934i)
|
Particular Values
L(1) |
≈ |
3.767382465 |
L(21) |
≈ |
3.767382465 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 11 | 1+(−0.183−3.31i)T |
| 19 | 1+(3.98+1.77i)T |
good | 5 | 1−2.09T+5T2 |
| 7 | 1−2.64iT−7T2 |
| 13 | 1−5.69T+13T2 |
| 17 | 1−6.27iT−17T2 |
| 23 | 1−6.58T+23T2 |
| 29 | 1+4.30T+29T2 |
| 31 | 1−2.68iT−31T2 |
| 37 | 1−1.22iT−37T2 |
| 41 | 1+9.90T+41T2 |
| 43 | 1+9.42iT−43T2 |
| 47 | 1+11.2T+47T2 |
| 53 | 1+3.73iT−53T2 |
| 59 | 1−0.0279iT−59T2 |
| 61 | 1−8.90iT−61T2 |
| 67 | 1+15.9iT−67T2 |
| 71 | 1+1.33iT−71T2 |
| 73 | 1−2.05iT−73T2 |
| 79 | 1−15.3T+79T2 |
| 83 | 1−6.89iT−83T2 |
| 89 | 1−6.24iT−89T2 |
| 97 | 1−9.05iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.730906898705466758275468389458, −8.005160511604629566839064997142, −6.67508002639865229848256931821, −6.46811093599464403550442361447, −5.58336349210873998850130261679, −5.07886724202649883686105438103, −4.01706262322895071095661483038, −3.23941853728969268645907527189, −2.02790415872803611109030531707, −1.66663747529418024475269957777,
0.842860406477504337689463847613, 1.80551963551099661039233931228, 3.06162045607237118640734693501, 3.62720159660620487911987850256, 4.59131146586347539983566886425, 5.40065405297556161880543167389, 6.15911246684450351973466868272, 6.62540040867755394079449395365, 7.48052206070989617765454869102, 8.365052942977394996046004158458