L(s) = 1 | + (−0.342 + 0.939i)2-s + (1.51 − 0.847i)3-s + (−0.766 − 0.642i)4-s + (−0.0403 + 0.228i)5-s + (0.279 + 1.70i)6-s + (1.82 + 1.91i)7-s + (0.866 − 0.500i)8-s + (1.56 − 2.55i)9-s + (−0.201 − 0.116i)10-s + (2.79 − 0.492i)11-s + (−1.70 − 0.322i)12-s + (−1.29 − 3.56i)13-s + (−2.42 + 1.06i)14-s + (0.132 + 0.379i)15-s + (0.173 + 0.984i)16-s + (−3.85 + 6.67i)17-s + ⋯ |
L(s) = 1 | + (−0.241 + 0.664i)2-s + (0.872 − 0.489i)3-s + (−0.383 − 0.321i)4-s + (−0.0180 + 0.102i)5-s + (0.114 + 0.697i)6-s + (0.690 + 0.723i)7-s + (0.306 − 0.176i)8-s + (0.521 − 0.853i)9-s + (−0.0636 − 0.0367i)10-s + (0.841 − 0.148i)11-s + (−0.491 − 0.0929i)12-s + (−0.359 − 0.987i)13-s + (−0.647 + 0.283i)14-s + (0.0342 + 0.0980i)15-s + (0.0434 + 0.246i)16-s + (−0.935 + 1.62i)17-s + ⋯ |
Λ(s)=(=(378s/2ΓC(s)L(s)(0.907−0.419i)Λ(2−s)
Λ(s)=(=(378s/2ΓC(s+1/2)L(s)(0.907−0.419i)Λ(1−s)
Degree: |
2 |
Conductor: |
378
= 2⋅33⋅7
|
Sign: |
0.907−0.419i
|
Analytic conductor: |
3.01834 |
Root analytic conductor: |
1.73733 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ378(293,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 378, ( :1/2), 0.907−0.419i)
|
Particular Values
L(1) |
≈ |
1.63280+0.359494i |
L(21) |
≈ |
1.63280+0.359494i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.342−0.939i)T |
| 3 | 1+(−1.51+0.847i)T |
| 7 | 1+(−1.82−1.91i)T |
good | 5 | 1+(0.0403−0.228i)T+(−4.69−1.71i)T2 |
| 11 | 1+(−2.79+0.492i)T+(10.3−3.76i)T2 |
| 13 | 1+(1.29+3.56i)T+(−9.95+8.35i)T2 |
| 17 | 1+(3.85−6.67i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−2.59+1.49i)T+(9.5−16.4i)T2 |
| 23 | 1+(−2.84+3.38i)T+(−3.99−22.6i)T2 |
| 29 | 1+(2.66−7.31i)T+(−22.2−18.6i)T2 |
| 31 | 1+(−0.0308+0.0367i)T+(−5.38−30.5i)T2 |
| 37 | 1+(−5.34+9.25i)T+(−18.5−32.0i)T2 |
| 41 | 1+(5.22−1.90i)T+(31.4−26.3i)T2 |
| 43 | 1+(0.0109+0.0621i)T+(−40.4+14.7i)T2 |
| 47 | 1+(7.18−6.02i)T+(8.16−46.2i)T2 |
| 53 | 1+10.8iT−53T2 |
| 59 | 1+(1.35−7.65i)T+(−55.4−20.1i)T2 |
| 61 | 1+(5.20+6.20i)T+(−10.5+60.0i)T2 |
| 67 | 1+(13.8−5.02i)T+(51.3−43.0i)T2 |
| 71 | 1+(6.22+3.59i)T+(35.5+61.4i)T2 |
| 73 | 1+(7.95−4.59i)T+(36.5−63.2i)T2 |
| 79 | 1+(9.36+3.40i)T+(60.5+50.7i)T2 |
| 83 | 1+(3.51+1.27i)T+(63.5+53.3i)T2 |
| 89 | 1+(2.75+4.76i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−9.53+1.68i)T+(91.1−33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.39095689700699069316433198220, −10.38914834557517532651083709911, −9.022262047086704063361489311715, −8.737645059556231258544261497641, −7.76328543865458478377088616106, −6.84908494646690683765745599392, −5.85592847762170377640153090112, −4.55778986536108085852092749261, −3.10276681451199369800203648636, −1.56588819047187209540073691440,
1.56980422985595043121037958902, 2.95277981230077951627846455471, 4.27459841924713271031577165033, 4.80963515851761506077918012964, 6.92566031262644403748282213137, 7.70751843322327597583969566880, 8.859330333697841430929646768333, 9.437515691177376624835931880539, 10.23230145400498204446216429226, 11.43571384867623627945615138966